Skip to main content Accessibility help

Insights into the periodic gust response of airfoils

  • Nathaniel J. Wei (a1) (a2), Johannes Kissing (a1), Tom T. B. Wester (a3), Sebastian Wegt (a1), Klaus Schiffmann (a1), Suad Jakirlic (a1), Michael Hölling (a3), Joachim Peinke (a3) and Cameron Tropea (a1)...


The unsteady lift response of an airfoil in a sinusoidal gust has in the past been modelled by two different transfer functions: the first-order Sears function and the second-order Atassi function. Previous studies have shown that the Sears function holds in experiments, but recently Cordes et al. (J. Fluid Mech., vol. 811, 2017) reported experimental data that corresponded to the Atassi function rather than the Sears function. In order to clarify the observed discrepancy, the specific differences between these models are isolated analytically. To this end, data and analysis are confined to unloaded airfoils. These differences are related to physical gust parameters, and gusts with these parameters are then produced in wind-tunnel experiments using an active-grid gust generator. Measurements of the unsteady gust loads on an airfoil in the wind tunnel at Reynolds numbers ( $Re_{c}$ ) of $2.0\times 10^{5}$ and $2.6\times 10^{5}$ and reduced frequencies between $0.09$ and $0.42$ confirm that the Sears and Atassi functions differ only in convention: the additional gust component of the Atassi problem can be scaled so that the Atassi function collapses onto the Sears function. These experiments, complemented by numerical simulations of the set-up, validate both models across a range of gust parameters. Finally, the influence of boundary-layer turbulence and the turbulent wake of the gust generator on experimental convergence with model predictions is investigated. These results serve to clarify the conditions under which the Sears and Atassi functions can be applied, and demonstrate that the Sears function can effectively model unsteady forces even when significant fluctuations in the streamwise velocity are present.


Corresponding author

Email address for correspondence:


Hide All
Atassi, H. M. 1984 The Sears problem for a lifting airfoil revisited – new results. J. Fluid Mech. 141, 109122.
Billah, K. Y. & Scanlan, R. H. 1991 Resonance, Tacoma Narrows bridge failure, and undergraduate physics textbooks. Am. J. Phys. 59 (2), 118124.
Commerford, G. L. & Carta, F. O. 1974 Unsteady aerodynamic response of a two-dimensional airfoil at high reduced frequency. AIAA J. 12 (1), 4348.
Cordes, U., Kampers, G., Meißner, T., Tropea, C., Peinke, J. & Hölling, M. 2017 Note on the limitations of the Theodorsen and Sears functions. J. Fluid Mech. 811, R1.
Drela, M. 1989 XFOIL: an analysis and design system for low Reynolds number airfoils. In Low Reynolds Number Aerodynamics, pp. 112. Springer.
Goldstein, M. E. & Atassi, H. 1976 A complete second-order theory for the unsteady flow about an airfoil due to a periodic gust. J. Fluid Mech. 74 (4), 741765.
Greenberg, J. M.1947 Airfoil in sinusoidal motion in a pulsating stream. NACA Tech. Note 1326.
Hakkinen, R. J. & Richardson, A. S.1957 Theoretical and experimental investigation of random gust loads Part I. Aerodynamic transfer function of a simple wing configuration in incompressible flow. NACA Tech. Note 3878.
Ham, N. D., Bauer, P. H. & Lawrence, T. L.1974 Wind tunnel generation of sinusoidal lateral and longitudinal gusts by circulation of twin parallel airfoils. NASA CR 137547. NASA.
Hatanaka, A. & Tanaka, H. 2002 New estimation method of aerodynamic admittance function. J. Wind Engng Ind. Aerodyn. 90 (12), 20732086.
Jakirlic, S. & Hanjalic, K. 2002 A new approach to modelling near-wall turbulence energy and stress dissipation. J. Fluid Mech. 459, 139166.
Jakirlić, S. & Maduta, R. 2015 Extending the bounds of ‘steady’ RANS closures: toward an instability-sensitive Reynolds stress model. Intl J. Heat Fluid Flow 51, 175194.
Jancauskas, E. D. & Melbourne, W. H. 1983 The aerodynamic admittance of a slender box girder bridge section. In Proceedings of the 8th Australasian Fluid Mechanics Conference, Newcastle, Australia. University of Newcastle, N.S.W., 11B.1–11B.4.
Jancauskas, E. D. & Melbourne, W. H. 1986 The aerodynamic admittance of two-dimensional rectangular section cylinders in smooth flow. J. Wind Engng Ind. Aerodyn. 23, 395408.
Knebel, P., Kittel, A. & Peinke, J. 2011 Atmospheric wind field conditions generated by active grids. Exp. Fluids 51 (2), 471481.
Lancelot, P. M. G. J., Sodja, J., Werter, N. P. M. & De Breuker, R. 2015 Design and testing of a low subsonic wind tunnel gust generator. In Proceedings of the 16th International Forum on Aeroelasticity and Structural Dynamics, IFASD 2015, St. Petersburg (Russia), 28 June–2 July, 2015; Author’s version. Central Aerohydrodynamic Institute (TsAGI).
Larose, G. L. 1999 Experimental determination of the aerodynamic admittance of a bridge deck segment. J. Fluids Struct. 13 (7), 10291040.
Leishman, G. J. 2006 Principles of Helicopter Aerodynamics, 2nd edn. Cambridge University Press.
Lysak, P. D., Capone, D. E. & Jonson, M. L. 2013 Prediction of high frequency gust response with airfoil thickness effects. J. Fluids Struct. 39 (Supplement C), 258274.
Lysak, P. D., Capone, D. E. & Jonson, M. L. 2016 Measurement of the unsteady lift of thick airfoils in incompressible turbulent flow. J. Fluids Struct. 66, 315330.
Maduta, R., Ullrich, M. & Jakirlic, S. 2017 Reynolds stress modelling of wake interference of two cylinders in tandem: conventional vs. eddy-resolving closure. Intl J. Heat Fluid Flow 67, 139148.
Massaro, M. & Graham, J. M. R. 2015 The effect of three-dimensionality on the aerodynamic admittance of thin sections in free stream turbulence. J. Fluids Struct. 57 (Supplement C), 8190.
Menter, F. R. & Egorov, Y. 2010 The scale-adaptive simulation method for unsteady turbulent flow predictions. Part 1: Theory and model description. Flow Turbul. Combust. 85 (1), 113138.
Popovac, M. & Hanjalic, K. 2007 Compound wall treatment for rans computation of complex turbulent flows and heat transfer. Flow Turbul. Combust. 78 (2), 177202.
Reynolds, K. V., Thomas, A. L. R. & Taylor, G. K. 2014 Wing tucks are a response to atmospheric turbulence in the soaring flight of the steppe eagle Aquila nipalensis. J. R. Soc. Interface 11 (101), 20140645.
Sankaran, R. & Jancauskas, E. D. 1992 Direct measurement of the aerodynamic admittance of two-dimensional rectangular cylinders in smooth and turbulent flows. J. Wind Engng Ind. Aerodyn. 41 (1), 601611.
Sears, W. R.1938 A systematic presentation of the theory of thin airfoils in non-uniform motion. PhD dissertation, California Institute of Technology, Pasadena, CA.
Sears, W. R. 1941 Some aspects of non-stationary airfoil theory and its practical application. J. Aeronaut. Sci. 8 (3), 104108.
Spinato, F., Tavner, P. J., Van Bussel, G. J. W. & Koutoulakos, E. 2009 Reliability of wind turbine subassemblies. IET Renew. Power Generation 3 (4), 387401.
Theodorsen, T.1934 General theory of aerodynamic instability and the mechanism of flutter. NACA Tech. Rep. 496.
Traphan, D., Wester, T. T. B., Peinke, J. & Gülker, G. 2018 On the aerodynamic behavior of an airfoil under tailored turbulent inflow conditions. In Proceedings of the 5th International Conference on Experimental Fluid Mechanics, Munich, Germany. Universität der Bundeswehr München.
von Kármán, T. 1938 Airfoil theory for non-uniform motion. J. Aeronaut. Sci. 5 (10), 379390.
Wang, J., Wang, K. & Wang, M. 2017 Large-eddy simulation study of rotor noise generation in a turbulent wake. In 23rd AIAA/CEAS Aeroacoustics Conference, Denver, Colorado, USA. American Institute of Aeronautics and Astronautics.
Wegt, S.2017 Numerische Modellierung der Tragflügelaerodynamik unter Bedingungen böiger Anströmung. Master’s thesis, Technische Universität Darmstadt.
Zarovy, S., Costello, M., Mehta, A., Gremillion, G., Miller, D., Ranganathan, B., Humbert, J. S. & Samuel, P. 2010 Experimental study of gust effects on micro air vehicles. In AIAA Atmospheric Flight Mechanics Conference. American Institute of Aeronautics and Astronautics.
Zhao, X., Gouder, K., Graham, J. M. R. & Limebeer, D. J. N. 2016 Buffet loading, dynamic response and aerodynamic control of a suspension bridge in a turbulent wind. J. Fluids Struct. 62, 384412.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed