Skip to main content Accessibility help

Insights into the dynamics of conical breakdown modes in coaxial swirling flow field

  • Kuppuraj Rajamanickam (a1) and Saptarshi Basu (a1)


The main idea of this paper is to understand the fundamental vortex breakdown mechanisms in the coaxial swirling flow field. In particular, the interaction dynamics of the flow field is meticulously addressed with the help of high fidelity laser diagnostic tools. Time-resolved particle image velocimetry (PIV) ( ${\sim}1500~\text{frames}~\text{s}^{-1}$ ) is employed in $y{-}r$ and multiple $r{-}\unicode[STIX]{x1D703}$ planes to precisely delineate the flow dynamics. Experiments are carried out for three sets of co-annular flow Reynolds number $Re_{a}=4896$ , 10 545, 17 546. Furthermore, for each $Re_{a}$ condition, the swirl number ‘ $S_{G}$ ’ is varied independently from $0\leqslant S_{G}\leqslant 3$ . The global evolution of flow field across various swirl numbers is presented using the time-averaged PIV data. Three distinct forms of vortex breakdown namely, pre-vortex breakdown (PVB), central toroidal recirculation zone (CTRZ; axisymmetric toroidal bubble type breakdown) and sudden conical breakdown are witnessed. Among these, the conical form of vortex breakdown is less explored in the literature. In this paper, much attention is therefore focused on exploring the governing mechanism of conical breakdown. It is should be interesting to note that, unlike other vortex breakdown modes, conical breakdown persists only for a very short band of $S_{G}$ . For any small increase/decrease in $S_{G}$ beyond a certain threshold, the flow spontaneously reverts back to the CTRZ state. Energy ranked and frequency-resolved/ranked robust structure identification methods – proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD) respectively – are implemented over instantaneous time-resolved PIV data sets to extract the dynamics of the coherent structures associated with each vortex breakdown mode. The dominant structures obtained from POD analysis suggest the dominance of the Kelvin–Helmholtz (KH) instability (axial $+$ azimuthal; accounts for ${\sim}80\,\%$ of total turbulent kinetic energy, TKE) for both PVB and CTRZ while the remaining energy is contributed by shedding modes. On the other hand, shedding modes contribute the majority of the TKE in conical breakdown. The frequency signatures quantified from POD temporal modes and DMD analysis reveal the occurrence of multiple dominant frequencies in the range of ${\sim}10{-}400~\text{Hz}$ with conical breakdown. This phenomenon may be a manifestation of high energy contribution by shedding eddies in the shear layer. Contrarily, with PVB and CTRZ, the dominant frequencies are observed in the range of ${\sim}20{-}40~\text{Hz}$ only. We have provided a detailed exposition of the mechanism through which conical breakdown occurs. In addition, the current work explores the hysteresis (path dependence) phenomena of conical breakdown as functions of the Reynolds and Rossby numbers. It has been observed that the conical mode is not reversible and highly dependent on the initial conditions.


Corresponding author

Email address for correspondence:


Hide All
Afanasyev, Y. D. & Peltier, W. R. 1998 Three-dimensional instability of anticyclonic swirling flow in rotating fluid: laboratory experiments and related theoretical predictions. Phys. Fluids 10, 31943202.
Arroyo, M. P. & Greated, C. A. 1991 Stereoscopic particle image velocimetry. Meas. Sci. Technol. 2, 11811186.
Benjamin, T. B. 1962 Theory of the vortex breakdown phenomenon. J. Fluid Mech. 14, 593629.
Benjamin, T. B. 1967 Some developments in the theory of vortex breakdown. J. Fluid Mech. 28, 6584.
Berkooz, G., Holmes, P. & Lumley, J. L. 1993 The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech. 25, 539575.
Billant, P., Chomaz, J.-M. & Huerre, P. 1998 Experimental study of vortex breakdown in swirling jets. J. Fluid Mech. 376, 183219.
Cala, C. E., Fernandes, Ec., Heitor, M. V. & Shtork, S. I. 2006 Coherent structures in unsteady swirling jet flow. Exp. Fluids 40, 267276.
Cassidy, J. J. & Falvey, H. T. 1970 Observations of unsteady flow arising after vortex breakdown. J. Fluid Mech. 41, 727736.
Chakraborty, P., Balachandar, S. & Adrian, R. J. 2005 On the relationships between local vortex identification schemes. J. Fluid Mech. 535, 189214.
Chanaud, R. C. 1965 Observations of oscillatory motion in certain swirling flows. J. Fluid Mech. 21, 111127.
Chterev, I., Sundararajan, G., Emerson, B., Seitzman, J. & Lieuwen, T. 2017 Precession effects on the relationship between time-averaged and instantaneous reacting flow characteristics. Combust. Sci. Technol. 189, 248265.
Claypole, T. C. & Syred, N. 1981 The effect of swirl burner aerodynamics on NOx formation. In Symposium (International) on Combustion, pp. 8189. Elsevier.
Coles, D. 1965 Transition in circular Couette flow. J. Fluid Mech. 21, 385425.
Escudier, M. P. & Keller, J. J. 1985 Recirculation in swirling flow – a manifestation of vortex breakdown. AIAA J. 23, 111116.
Faler, J. H. & Leibovich, S. 1977 Disrupted states of vortex flow and vortex breakdown. Phys. Fluids 20, 13851400.
Fu, Y., Cai, J., Jeng, S.-M. & Mongia, H. 2007 Characteristics of the swirling flow generated by a counter-rotating swirler. In 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, p. 5690. AIAA.
Gallaire, F. & Chomaz, J.-M. 2003a Instability mechanisms in swirling flows. Phys. Fluids 15, 26222639.
Gallaire, F. & Chomaz, J.-M. 2003b Mode selection in swirling jet experiments: a linear stability analysis. J. Fluid Mech. 494, 223253.
Garcia-Villalba, M., Frohlich, J. & Rodi, W. 2005 Large eddy simulation of an annular swirling jet with pulsating inflow. In TSFP Digital Library Online. Begel House Inc.
Gupta, A. K., Lilley, D. G. & Syred, N. 1984 Swirl Flows, vol. 488, p. 1. Abacus Press.
Hall, M. G. 1972 Vortex breakdown. Annu. Rev. Fluid Mech. 4, 195218.
Harvey, J. K. 1962 Some observations of the vortex breakdown phenomenon. J. Fluid Mech. 14, 585592.
Huang, Y., Wang, S. & Yang, V. 2005 Flow and flame dynamics of lean premixed swirl injectors. Prog. Astronaut. Aeronaut. 210, 213.
Komarek, T. & Polifke, W. 2010 Impact of swirl fluctuations on the flame response of a perfectly premixed swirl burner. Trans. ASME J. Engng Gas Turbines Power 132, 061503.
Lefebvre, A. H. 1998 Gas Turbine Combustion. CRC Press.
Leibovich, S. 1978 The structure of vortex breakdown. Annu. Rev. Fluid Mech. 10, 221246.
Lieuwen, T. C. 2012 Unsteady Combustor Physics. Cambridge University Press.
Loiseleux, T., Chomaz, J. M. & Huerre, P. 1998 The effect of swirl on jets and wakes: linear instability of the Rankine vortex with axial flow. Phys. Fluids 10, 11201134.
Lopez, J. M. 1990 Axisymmetric vortex breakdown. Part 1. Confined swirling flow. J. Fluid Mech. 221, 533552.
Lucca-Negro, O. & O’doherty, T. 2001 Vortex breakdown: a review. Prog. Energy Combust. Sci. 27, 431481.
Markovich, D. M., Abdurakipov, S. S., Chikishev, L. M., Dulin, V. M. & Hanjalić, K. 2014 Comparative analysis of low-and high-swirl confined flames and jets by proper orthogonal and dynamic mode decompositions. Phys. Fluids 26, 065109.
Markovich, D. M., Dulin, V. M., Abdurakipov, S. S., Kozinkin, L. A., Tokarev, M. P. & Hanjalić, K. 2016 Helical modes in low-and high-swirl jets measured by tomographic PIV. J. Turbul. 17, 678698.
Meliga, P., Gallaire, F. & Chomaz, J.-M. 2012 A weakly nonlinear mechanism for mode selection in swirling jets. J. Fluid Mech. 699, 216262.
Mohan, A. T., Gaitonde, D. V. & Visbal, M. R. 2015 Model reduction and analysis of deep dynamic stall on a plunging airfoil using dynamic mode decomposition. In 53rd AIAA Aerospace Sciences Meeting, p. 1058. AIAA.
Oberleithner, K., Sieber, M., Nayeri, C. N., Paschereit, C. O., Petz, C., Hege, H.-C., Noack, B. R. & Wygnanski, I. 2011 Three-dimensional coherent structures in a swirling jet undergoing vortex breakdown: stability analysis and empirical mode construction. J. Fluid Mech. 679, 383414.
Oberleithner, K., Stöhr, M., Im, S. H., Arndt, C. M. & Steinberg, A. M. 2015 Formation and flame-induced suppression of the precessing vortex core in a swirl combustor: experiments and linear stability analysis. Combust. Flame 162, 31003114.
Prasad, A. K. & Adrian, R. J. 1993 Stereoscopic particle image velocimetry applied to liquid flows. Exp. Fluids 15, 4960.
Proctor, J. L., Brunton, S. L. & Kutz, J. N. 2016 Dynamic mode decomposition with control. SIAM J. Appl. Dyn. Syst. 15, 142161.
Raffel, M., Willert, C. E., Wereley, S. & Kompenhans, J. 2013 Particle Image Velocimetry: A Practical Guide. Springer.
Rajamanickam, K. & Basu, S. 2017a On the dynamics of vortex–droplet interactions, dispersion and breakup in a coaxial swirling flow. J. Fluid Mech. 827, 572613.
Rajamanickam, K. & Basu, S. 2017b Insights into the dynamics of spray–swirl interactions. J. Fluid Mech. 810, 82126.
Rajamanickam, K., Roy, S. & Basu, S. 2018 Novel fuel injection systems for high-speed combustors. In Droplets and Sprays, pp. 183216. Springer.
Rowley, C. W., Mezić, I., Bagheri, S., Schlatter, P. & Henningson, D. S. 2009 Spectral analysis of nonlinear flows. J. Fluid Mech. 641, 115127.
Roy, S., Yi, T., Jiang, N., Gunaratne, G. H., Chterev, I., Emerson, B., Lieuwen, T., Caswell, A. W. & Gord, J. R. 2017 Dynamics of robust structures in turbulent swirling reacting flows. J. Fluid Mech. 816, 554585.
Santhosh, R. & Basu, S. 2015 Acoustic response of vortex breakdown modes in a coaxial isothermal unconfined swirling jet. Phys. Fluids 27, 033601.
Santhosh, R., Miglani, A. & Basu, S. 2013 Transition and acoustic response of recirculation structures in an unconfined co-axial isothermal swirling flow. Phys. Fluids 25, 083603.
Santhosh, R., Miglani, A. & Basu, S. 2014 Transition in vortex breakdown modes in a coaxial isothermal unconfined swirling jet. Phys. Fluids 26, 043601.
Sarpkaya, T. 1971a Vortex breakdown in swirling conical flows. AIAA J. 9, 17921799.
Sarpkaya, T. 1971b On stationary and travelling vortex breakdowns. J. Fluid Mech. 45, 545559.
Sarpkaya, T. 1974 Effect of the adverse pressure gradient on vortex breakdown. AIAA J. 12, 602607.
Schmid, P. J. 2010 Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 528.
Sciacchitano, A., Wieneke, B. & Scarano, F. 2013 PIV uncertainty quantification by image matching. Meas. Sci. Technol. 24, 045302.
Sirovich, L. 1987 Turbulence and the dynamics of coherent structures. Part I. Coherent structures. Q. Appl. Maths 45, 561571.
Spall, R. E., Gatski, T. B. & Grosch, C. E. 1987 A criterion for vortex breakdown. Phys. Fluids 30, 34343440.
Steinberg, A. M., Boxx, I., Stöhr, M., Meier, W. & Carter, C. D. 2012 Effects of flow structure dynamics on thermoacoustic instabilities in swirl-stabilized combustion. AIAA J. 50, 952967.
Stöhr, M., Arndt, C. M. & Meier, W. 2013 Effects of Damköhler number on vortex–flame interaction in a gas turbine model combustor. Proc. Combust. Inst. 34, 31073115.
Stöhr, M., Arndt, C. M. & Meier, W. 2015 Transient effects of fuel–air mixing in a partially-premixed turbulent swirl flame. Proc. Combust. Inst. 35, 33273335.
Syred, N. 2006 A review of oscillation mechanisms and the role of the precessing vortex core (PVC) in swirl combustion systems. Prog. Energy Combust. Sci. 32, 93161.
Taira, K., Brunton, S. L., Dawson, S., Rowley, C. W., Colonius, T., McKeon, B. J., Schmidt, O. T., Gordeyev, S., Theofilis, V. & Ukeiley, L. S.2017 Modal analysis of fluid flows: an overview. arXiv:1702.01453.
Wang, S., Rusak, Z., Gong, R. & Liu, F. 2016 On the three-dimensional stability of a solid-body rotation flow in a finite-length rotating pipe. J. Fluid Mech. 797, 284321.
Wieneke, B. 2015 PIV uncertainty quantification from correlation statistics. Meas. Sci. Technol. 26, 074002.
Williams, M. O., Kevrekidis, I. G. & Rowley, C. W. 2015 A data-driven approximation of the Koopman operator: extending dynamic mode decomposition. J. Nonlinear Sci. 25, 13071346.
Wilson, B. M., Mejia-Alvarez, R. & Prestridge, K. 2015 Simultaneous PIV and PLIF measurements of Mach number effects on single-interface Richtmyer–Meshkov mixing. In 29th International Symposium on Shock Waves 2, pp. 11251130. Springer.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Type Description Title

Rajamanickam et al. supplementary movie 1
Flow transitions to CB

 Video (52.6 MB)
52.6 MB

Rajamanickam et al. supplementary movie 2
Flow structures in r-theta plane

 Video (9.4 MB)
9.4 MB

Rajamanickam et al. supplementary movie 3
Intense outer shear layer shedding for PVB

 Video (5.3 MB)
5.3 MB

Rajamanickam et al. supplementary movie 4
Different transitions

 Video (23.3 MB)
23.3 MB

Rajamanickam et al. supplementary movie 5
Full conical breakdown in yr plane

 Video (37.6 MB)
37.6 MB

Rajamanickam et al. supplementary movie 6
The full spectrum of flow structures

 Video (9.9 MB)
9.9 MB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed