Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-18T21:51:18.972Z Has data issue: false hasContentIssue false

Injection-gas-composition effects on hypersonic boundary-layer transition

Published online by Cambridge University Press:  10 March 2020

Fernando Miró Miró*
Affiliation:
Von Kármán Institute for Fluid Dynamics, Rhode-Saint-Genèse1642, Belgium
Fabio Pinna
Affiliation:
Von Kármán Institute for Fluid Dynamics, Rhode-Saint-Genèse1642, Belgium
*
Email address for correspondence: fernando.miro.miro@vki.ac.be

Abstract

The thermal protection system in atmospheric-entry and hypersonic-cruise vehicles are oftentimes designed to ablate during their operation, thus injecting a mixture of various gases with distinct properties into the boundary layer. Such outgassing affects the propagation of instabilities within the boundary layer that ultimately originates the transition to turbulence. This work uses linear stability theory, in combination with the e$^{N}$ method, to establish the underlying reason for the experimentally observed advancement/delay of transition in sharp slender hypersonic cones, when injecting lighter/heavier gases. Contrary to the current understanding and experimental correlations, this numerical analysis suggests that such a behaviour is not linked to the isolated effect of the injected gas’ molar weight, but to its combination with the blowing discontinuity, porosity and the appearance of a shocklet, consequence of the injected gas composition. The shocklet constitutes a density gradient that acts on second-mode instabilities like a thermoacoustic impedance.

Type
JFM Rapids
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnal, D. 1993 Boundary layer transition: predictions based on linear theory. In Special Course on Progress in Transition Modelling AGARD 793.Google Scholar
Bhutta, B. A. & Lewis, C. H.1992 Low-to-high altitude predictions of three-dimensional ablative reentry flowfields. AIAA Paper 92-0366.CrossRefGoogle Scholar
Fedorov, A. V., Malmuth, N. D., Rasheed, A. & Hornung, H. G. 2001 Stabilization of hypersonic boundary layers by porous coatings. AIAA J. 39 (4), 605610.CrossRefGoogle Scholar
Gaponov, S. A.1978 Effect of the properties of a porous coating on boundary layer stability. Tech. Rep. TM 75235, NASA, Santa Barbara, CA.Google Scholar
Ghaffari, S., Marxen, O., Iaccarino, G. & Shaqfeh, E. S. G.2010 Numerical simulations of hypersonic boundary-layer instability with wall blowing. AIAA Paper 2010-706.CrossRefGoogle Scholar
Goldberg, U., Peroomian, O., Chakravarthy, S. & Sekar, B.1997 Validation of CFD$++$ code capability for supersonic combustor flowfields. AIAA Paper 1997-3271.CrossRefGoogle Scholar
Groot, K. J., Miró Miró, F., Beyak, E. S., Moyes, A. J., Pinna, F. & Reed, H. L.2018 DEKAF: spectral multi-regime basic-state solver for boundary layer stability. AIAA Paper 2018-3380.CrossRefGoogle Scholar
Grossir, G., Pinna, F., Bonucci, G., Regert, T., Rambaud, P. & Chazot, O.2014 Hypersonic boundary layer transition on a 7 degree half-angle cone at Mach 10. AIAA Paper 2014-2779.CrossRefGoogle Scholar
Jewell, J. S., Wagnild, R. M., Leyva, I. A., Candler, G. V. & Shepherd, J. E.2013 Transition within a hypervelocity boundary layer on a 5-degree half-angle cone in air/$\text{CO}_{2}$ mixtures. AIAA Paper 2013-0523.CrossRefGoogle Scholar
Johnson, H. B., Gronvall, J. E. & Candler, G. V.2009 Reacting hypersonic boundary layer stability with blowing and suction. AIAA Paper 2009-938.CrossRefGoogle Scholar
Keller, M. A., Kloker, M. J. & Olivier, H. 2015 Influence of cooling-gas properties on film-cooling effectiveness in supersonic flow. J. Spacecr. Rockets 52 (5), 14431455.CrossRefGoogle Scholar
Kuehl, J. J. 2018 Thermoacoustic interpretation of second-mode instability. AIAA J. 56 (9), 35853592.CrossRefGoogle Scholar
Leyva, I. A., Laurence, S. J., Beierholm, A. W.-K., Hornung, H. G., Wagnild, R. M. & Candler, G. V.2009 Transition delay in hypervelocity boundary layers by means of $\text{CO}_{2}$/acoustic instability interactions. AIAA Paper 2009-1287.CrossRefGoogle Scholar
Linn, J. & Kloker, M. J. 2008 Numerical investigations of film cooling and its influence on the hypersonic boundary-layer flow numerical investigations of film cooling and its influence on the hypersonic boundary-layer flow. In RESPACE - Key Technologies for Reusable Space Systems (ed. Glhan, A.), pp. 151169. Springer.CrossRefGoogle Scholar
Lysenko, V. I., Gaponov, S. A., Smorodsky, B. V., Yermolaev, Y. G. & Kosinov, A. D. 2019 Influence of distributed heavy-gas injection on stability and transition of supersonic boundary-layer flow. Phys. Fluids 31 (10), 104103.CrossRefGoogle Scholar
Mack, L. M. 1984 Boundary-layer linear stability theory. In Special Course on Stability and Transition of Laminar Flow, AGARD 709.Google Scholar
Martin, N., Grossir, G., Miró Miró, F., Le Quang, D. & Chazot, O.2019 Implementation of a laser-based schlieren system for boundary layer instability investigation in the VKI H3 hypersonic wind tunnel. AIAA Paper 2019-0624.CrossRefGoogle Scholar
Marvin, J. G. & Akin, C. M. 1970 Combined effects of mass addition and nose bluntness on boundary-layer transition. AIAA J. 8 (5), 857863.CrossRefGoogle Scholar
Masutti, D., Pinna, F., Gunaydinoglu, E., Sopek, T. & Chazot, O. 2012 Natural and induced transition on a 7deg half-cone at Mach 6. In RTO-AVT-200. NATO-RTO.Google Scholar
Milos, F. S. & Chen, Y. K. 2013 Ablation, thermal response, and chemistry program for analysis of thermal protection systems. J. Spacecr. Rockets 50 (1), 137149.CrossRefGoogle Scholar
Miró, F. M., Dehairs, P., Pinna, F., Gkolia, M., Masutti, D., Regert, T. & Chazot, O. 2019 Effect of wall blowing on hypersonic boundary-layer transition. AIAA J. 57 (4), 15671578.CrossRefGoogle Scholar
Miró Miró, F.2020 Numerical investigation of hypersonic boundary-layer stability and transition in the presence of ablation phenomena. PhD thesis, Université Libre de Bruxelles and von Kármán Insitute for Fluid Dynamics.Google Scholar
Miró Miró, F., Beyak, E. S., Mullen, D., Pinna, F. & Reed, H. L. 2018a Ionization and dissociation effects on hypersonic boundary-layer stability. In 31st ICAS Congress. International Council of the Aeronautical Sciences.Google Scholar
Miró Miró, F., Beyak, E. S., Pinna, F. & Reed, H. L. 2019 High-enthalpy models for boundary-layer stability and transition. Phys. Fluids 31, 044101.CrossRefGoogle Scholar
Miró Miró, F. & Pinna, F. 2018 Effect of uneven wall blowing on hypersonic boundary-layer stability and transition. Phys. Fluids 30, 084106.CrossRefGoogle Scholar
Miró Miró, F., Pinna, F., Beyak, E. S., Barbante, P. & Reed, H. L.2018b Diffusion and chemical non-equilibrium effects on hypersonic boundary-layer stability. AIAA Paper 2018-1824.CrossRefGoogle Scholar
Pinna, F.2013 VESTA toolkit: a software to compute transition and stability of boundary layers. AIAA Paper 2013-2616.CrossRefGoogle Scholar
Pinna, F. & Groot, K. J.2014 Automatic derivation of stability equations in arbitrary coordinates and different flow regimes. AIAA Paper 2014-2634.CrossRefGoogle Scholar
Pinna, F. & Rambaud, P. 2013 Effects of shock on hypersonic boundary layer stability. Progr. Flight Phys. 5, 93106.CrossRefGoogle Scholar
Schneider, S. P. 2010 Hypersonic boundary-layer transition with ablation and blowing. J. Spacecr. Rockets 47 (2), 225237.CrossRefGoogle Scholar
Scott, C. J.1960 Experimental investigations of laminar heat transfer and transition with foreign gas injection of a 16-deg porous cone at $M=5$. Tech. Rep. UMRAL RR 174, University of Minnesota, Institute of Technology, Rosemony Aeronautical Laboratories, Minneapolis, MN.Google Scholar
Stalmach, C. J. Jr., Bertin, J. J., Pope, T. C. & McCloskey, M. H. 1971 A study of boundary layer transition on outgassing cones in hypersonic flow. Tech. Rep. CR-1908, NASA.Google Scholar
Stuckert, G. & Reed, H. L. 1994 Linear disturbances in hypersonic, chemically reacting shock layers. AIAA J. 32 (7), 13841393.CrossRefGoogle Scholar
Wagner, A. 2015 The role of carbon/carbon composites in the delay of hypersonic laminar to turbulent boundary layer transition. In NATO-STO-AVT-261. NATO-STO.Google Scholar
White, F. 1991 Viscous Fluid Flow. McGraw-Hill.Google Scholar
Wilke, C. R. 1950 A viscosity equation for gas mixtures. J. Chem. Phys. 18 (4), 517519.CrossRefGoogle Scholar
Wright, M. J., Bose, D., Palmer, G. E. & Levin, E. 2005 Recommended collision integrals for transport property computations. Part I. Air species. AIAA J. 43 (12), 25582564.CrossRefGoogle Scholar
Wright, M. J., Hwang, H. H. & Schwenke, D. W. 2007 Recommended collision integrals for transport property computations. Part II. Mars and Venus entries. AIAA J. 45 (1), 281288.CrossRefGoogle Scholar