Skip to main content Accessibility help

Information stored in Faraday waves: the origin of a path memory



On a vertically vibrating fluid interface, a droplet can remain bouncing indefinitely. When approaching the Faraday instability onset, the droplet couples to the wave it generates and starts propagating horizontally. The resulting wave–particle association, called a walker, was shown previously to have remarkable dynamical properties, reminiscent of quantum behaviours. In the present article, the nature of a walker's wave field is investigated experimentally, numerically and theoretically. It is shown to result from the superposition of waves emitted by the droplet collisions with the interface. A single impact is studied experimentally and in a fluid mechanics theoretical approach. It is shown that each shock emits a radial travelling wave, leaving behind a localized mode of slowly decaying Faraday standing waves. As it moves, the walker keeps generating waves and the global structure of the wave field results from the linear superposition of the waves generated along the recent trajectory. For rectilinear trajectories, this results in a Fresnel interference pattern of the global wave field. Since the droplet moves due to its interaction with the distorted interface, this means that it is guided by a pilot wave that contains a path memory. Through this wave-mediated memory, the past as well as the environment determines the walker's present motion.


Corresponding author

Email address for correspondence:


Hide All
Aranson, I. S., Gorshkov, K. A., Lomov, A. S. & Rabinovich, M. I. 1990 Stable particle-like solutions of multidimensional nonlinear fields. Physica D 43, 435453.
Bach, G. A., Koch, D. L. & Gopinath, A. 2004 Coalescence and bouncing of small aerosol droplets. J. Fluid Mech. 518, 157185.
Bender, C. M. & Orszag, S. A. 1978 Advanced Mathematical Methods for Scientists and Engineers. McGraw-Hill.
Benjamin, T. B. & Ursell, F. 1954 The stability of a plane free surface of a liquid in vertical periodic motion. Proc. R. Soc. Lond. A 225, 505515.
Bohm, D. 1952 A suggested interpretation of the quantum theory in terms of hidden variables. Phys. Rev. 85, 166179.
Born, M. & Wolf, E. 1959 Principles of Optics. Cambridge University Press.
de Broglie, L. 1926 Ondes et mouvements. Gautier Villars.
Burke, J. & Knobloch, E. 2006 Localized states in the generalized Swift–Hohenberg equation. Phys. Rev. E 73, 056211.
Ciliberto, S. & Gollub, J. P. 1984 Pattern competition leads to chaos. Phys. Rev. Lett. 52, 922925.
Cornu, A. 1874 Méthode nouvelle pour la discussion des problèmes de diffraction dans le cas d'une onde cylindrique. J. Phys. 3, 44.
Couder, Y. 2000 Viscous fingering as an archetype for growth patterns. In Perspectives in Fluid Dynamics (ed. Batchelor, G. K., Moffat, H. K. & Worster, M. G.), pp. 53104. Cambridge University Press.
Couder, Y. & Fort, E. 2006 Single particle diffraction and interferences at macroscopic scale. Phys. Rev. Lett. 97, 154101.
Couder, Y., Fort, E., Gautier, C. H. & Boudaoud, A. 2005 a From bouncing to floating: noncoalescence of drops on a fluid bath. Phys. Rev. Lett. 94, 177801.
Couder, Y., Protière, S., Fort, E. & Boudaoud, A. 2005 b Dynamical phenomena: walking and orbiting droplets. Nature 437, 208.
Douady, S. 1990 Experimental study of the Faraday instability. J. Fluid Mech. 221, 383409.
Douady, S. & Couder, Y. 1996 Phyllotaxis as a dynamical self-organizing process, the simulation of the transient regimes of ontogeny. J. Theor. Biol. 178, 295312.
Douady, S. & Fauve, S. 1988 Pattern selection in Faraday instability. Europhys. Lett. 6, 221226.
Drazin, P. G. & Reid, W. H. 1981 Hydrodynamic Stability. Cambridge University Press.
Eddi, A., Fort, E., Moisy, F. & Couder, Y. 2009 Unpredictable tunneling of a classical wave–particle association. Phys. Rev. Lett. 102, 240401.
Edwards, W. S. & Fauve, S. 1994 Patterns and quasi-patterns in the Faraday experiment. J. Fluid Mech. 278, 123148.
Faraday, M. 1831 On the forms and states of fluids on vibrating elastic surfaces. Phil. Trans. R. Soc. Lond. 52, 299.
Fauve, S. 1998 Pattern forming instabilities. In Hydrodynamics and Nonlinear Instabilities (ed. Godreche, C. & Manneville, P.), pp. 387491. Cambridge University Press.
Fort, E., Eddi, A., Boudaoud, A., Moukhtar, J. & Couder, Y. 2010 Path-memory induced quantization of classical orbits. Proc. Natl Acad. Sci. USA 107 (41), 1751517520.
Galassi, M., Davies, J., Theiler, J., Gough, B., Jungman, G., Alken, P., Booth, M. & Rossi, F. 2009 GNU Scientific Library Reference Manual, 3rd edn. Network Theory Ltd.
Gilet, T. & Bush, J. W. M. 2009 a Chaotic bouncing of a droplet on a soap film. Phys. Rev. Lett. 102, 014501.
Gilet, T. & Bush, J. W. M. 2009 b The fluid trampoline: droplets bouncing on a soap film. J. Fluid Mech. 625, 167203.
Goldman, T., Livne, A. & Fineberg, J. 2010 Acquisition of inertia by a moving crack. Phys. Rev. Lett. 104, 114301.
Gopinath, A. & Koch, D. L. 2001 Dynamics of droplet rebound from a weakly deformable gas–liquid interface. Phys. Fluids 13, 3526.
Gopinath, A. & Koch, D. L. 2002 Collision and rebound of small droplets in an incompressible continuum gas. J. Fluid Mech. 454, 145201.
Guckenheimer, J. & Holmes, P. 1983 Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Springer.
Huygens, C. 1690 Traité de la lumière. Van der Aa.
Keolian, R., Turkevich, L. A., Putterman, J., Rudnick, I. & Rudnick, J. A. 1984 Subharmonic sequences in the Faraday experiment: departures from period doubling. Phys. Rev. Lett. 47, 11331136.
Kolodner, P., Bensimon, D. & Surko, C. M. 1988 Traveling-wave convection in an annulus. Phys. Rev. Lett. 60, 17231726.
Kumar, K. & Tuckerman, L. S. 1994 Parametric instability of the interface between two fluids. J. Fluid Mech. 279, 4968.
Liehr, A. W., Moskalenko, A. S., Astrov Yu., A., Bode, M. & Purwins, H.-G. 2004 Rotating bound states of dissipative solitons in systems of reaction–diffusion type. Eur. Phys. J. B 37, 199204.
Lioubashevski, O. & Fineberg, J. 2001 Shock wave criterion for propagating solitary states in driven surface waves. Phys. Rev. E 63, 035302.
Moisy, F., Rabaud, M. & Salsac, K. 2009 A synthetic Schlieren method for the measurement of the topography of a liquid interface. Exp. Fluids 46, 10211036.
Pieranski, P. 1983 Jumping particle model: period doubling cascade in an experimental system. J. Phys. (Paris) 44, 573578.
Protière, S., Boudaoud, A. & Couder, Y. 2006 Particle–wave association on a fluid interface. J. Fluid Mech. 554, 85108.
Ramazza, P. L., Benkler, E., Bortolozzo, U., Boccaletti, S., Ducci, S. & Arecchi, F. T. 2002 Tailoring the profile and interactions of optical localized structures. Phys. Rev. E 65, 066204.
Thual, O. & Fauve, S. 1988 Localized structures generated by subcritical instabilities. J. Phys. 49, 18291833.
Tsimring, L. S. & Aranson, I. S. 1997 Localized and cellular patterns in a vibrated granular layer. Phys. Rev. Lett. 79, 213216.
Umbanhowar, P. B., Melo, F. & Swinney, H. L. 1996 Localized excitations in a vertically vibrated granular layer. Nature 382, 793796.
Vandewalle, N., Terwagne, D., Mulleners, K., Gilet, T. & Dorbolo, S. 2008 Dynamics of a bouncing droplet onto a vertically vibrated surface. Phys. Rev. Lett. 100, 167802.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Information stored in Faraday waves: the origin of a path memory



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed