Skip to main content Accessibility help

Influence of the velocity field on scalar transport in gaseous transverse jets

  • L. Gevorkyan (a1), T. Shoji (a1), W. Y. Peng (a1) and A. R. Karagozian (a1)


The present experiments explored the dynamical character of the gaseous jet injected flush into cross-flow for variable jet-to-cross-flow momentum flux ratios $J$ (5, 12 and 41) and density ratios $S$ (0.35 and 1.0). Contoured nozzle and straight pipe injectors were studied here, with the jet Reynolds number fixed at 1900 as other flow parameters were varied. Simultaneous acetone planar laser-induced fluorescence (PLIF) imaging and stereo particle image velocimetry (PIV) were used to study the relationships between scalar and velocity/vorticity fields, with a special focus on comparing PLIF-based extraction of scalar dissipation rates and local strain rates with PIV-based local strain rates in the upstream and downstream shear layers of the jet. There was remarkable similarity between the scalar and vorticity fields for the jet in cross-flow, spanning conditions for absolutely unstable upstream jet shear layers at low $J$ or $S$ values to conditions for convectively unstable shear layers for larger $J$ , equidensity conditions (Megerian et al., J. Fluid Mech., vol. 593, 2007, pp. 93–129; Getsinger et al., Exp. Fluids, vol. 53, 2012, pp. 783–801). Proper orthogonal decomposition applied to both scalar and velocity fields revealed strengthening instabilities in both the upstream shear layer and in the jet’s wake as $J$ was reduced. The simultaneous measurements allowed PLIF-extracted scalar dissipation rates and strain rates to be determined via a flamelet-like model and compared with PIV-extracted strain rates, each in the diffusion layer-normal direction. There was generally very good qualitative and quantitative agreement for these metrics in both the jet upstream and downstream shear layers for most flow conditions, with excellent correspondence to locations of shear layer vorticity roll up, although downstream shear layer strain rates in some cases showed lesser correspondence between PLIF- and PIV-based data. Such differences are shown to potentially result from diffusion and resolution effects as well as the influence of three-dimensional and transient effects which can be more significant in the lee side of the jet. Nevertheless, the present results reveal interesting dynamics and demonstrate the importance of strain fields in enhanced diffusion and transport phenomena.


Corresponding author

Email address for correspondence:


Hide All
Adrian, R. J., Durao, D., Durst, F., Heitor, M. V., Maeda, M. & Whitelaw, J. H.(Eds) 2000 Laser Techniques Applied to Fluid Mechanics: Selected Papers from the 9th International Symposium. Springer.
Adrian, R. J. & Westerweel, J. 2011 Particle Image Velocimetry. Cambridge University Press.
Alves, L. S. de B., Kelly, R. E. & Karagozian, A. R. 2008 Transverse-jet shear-layer instabilities. Part 2. Linear analysis for large jet-to-crossflow velocity ratio. J. Fluid Mech. 602, 383401.
Ashurst, Wm. T., Kerstein, A. R., Kerr, R. M. & Gibson, C. H. 1987 Alignment of vorticity and scalar gradient with strain rate in simulated Navier–Stokes turbulence. Phys. Fluids 30, 23432353.
Berkooz, G., Holmes, P. & Lumley, J. L. 1993 The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech. 25, 539575.
Bird, R. B., Stewart, W. E. & Lightfoot, E. N. 1960 Transport Phenomena. Wiley.
Bish, E. S. & Dahm, W. J. A. 1995 Strained dissipation and reaction layer analyses of nonequilibrium chemistry in turbulent reacting flows. Combust. Flame 100, 457464.
Buch, K. A. & Dahm, W. J. A. 1996 Experimental study of the fine-scale structure of conserved scalar mixing in turbulent shear flows. Part 1. Sc ≫ 1. J. Fluid Mech. 317, 2171.
Buch, K. A. & Dahm, W. J. A. 1998 Experimental study of the fine-scale structure of conserved scalar mixing in turbulent shear flows. Part 2. Sc = 1. J. Fluid Mech. 364, 129.
Canzonieri, K.2009 Experimental studies on low density jets in crossflow. Master’s thesis, University of California, Los Angeles.
Chomaz, J.-M. 2005 Global instabilities in spatially developing flows: non-normality and nonlinearity. Annu. Rev. Fluid Mech. 37, 357392.
Coriton, B., Steinberg, A. M. & Frank, J. H. 2014 High-speed tomographic PIV and OH PLIF measurements in turbulent reactive flows. Exp. Fluids 55, 17431762.
Cortelezzi, L. & Karagozian, A. R. 2001 On the formation of the counter-rotating vortex pair in transverse jets. J. Fluid Mech. 446, 347373.
Davitian, J., Getsinger, D., Hendrickson, C. & Karagozian, A. R. 2010a Transition to global instability in transverse-jet shear layers. J. Fluid Mech. 661, 294315.
Davitian, J., Hendrickson, C., Getsinger, D., M’Closkey, R. T. & Karagozian, A. R. 2010b Strategic control of transverse jet shear layer instabilities. AIAA J. 48 (9), 21452156.
Dowling, D. R. & Dimotakis, P. E. 1990 Similarity of the concentration field of gas-phase turbulent jets. J. Fluid Mech. 218, 109141.
Ekkad, S. V., Ou, S. & Rivir, R. B. 2006 Effect of jet pulsation and duty cycle on film cooling from a single jet on a leading edge model. Trans. ASME J. Turbomach. 128 (3), 564571.
Fearn, R. & Weston, R. 1974 Vorticity associated with a jet in a crossflow. AIAA J. 12, 16661671.
Fric, T. F. & Roshko, A. 1994 Vortical structure in the wake of a transverse jet. J. Fluid Mech. 279, 147.
Getsinger, D., Gevorkyan, L., Smith, O. I. & Karagozian, A. R. 2014 Structural and stability characteristics of jets in crossflow. J. Fluid Mech. 760, 342367.
Getsinger, D. R., Hendrickson, C. & Karagozian, A. R. 2012 Shear layer instabilities in low-density transverse jets. Exp. Fluids 53, 783801.
Gevorkyan, L.2015 Structure and mixing characterization of variable density transverse jet flows. PhD thesis, UCLA.
Gevorkyan, L., Shoji, T., Getsinger, D. R., Smith, O. I. & Karagozian, A. R. 2016 Transverse jet mixing characteristics. J. Fluid Mech. 790, 237274.
Hallberg, M. P. & Strykowski, P. J. 2006 On the universality of global modes in low-density axisymmetric jets. J. Fluid Mech. 569, 493507.
Hendrickson, C. & M’Closkey, R. 2012 Phase compensation strategies for modulated–demodulated control with application to pulsed jet injection. ASME J. Dyn. Syst. Meas. Control 134, 011024.
Howarth, L. 1948 Concerning the effect of compressibility on laminar boundary layers and their separation. Proc. R. Soc. Lond. A 194 (1036), 1642.
Huerre, P. & Monkewitz, P. A. 1990 Local and global instabilities in spatially developing flows. Annu. Rev. Fluid Mech. 22, 473537.
Iyer, P. S. & Mahesh, K. 2016 A numerical study of shear layer characteristics of low-speed transverse jets. J. Fluid Mech. 790, 275307.
Juniper, M. P., Li, L. K. B. & Nichols, J. W. 2009 Forcing of self-excited round jet diffusion flames. Proc. Combust. Inst. 32, 11911198.
Kamotani, Y. & Greber, I. 1972 Experiments on a turbulent jet in a cross flow. AIAA J. 10 (11), 14251429.
Karagozian, A. R. 1986 An analytical model for the vorticity associated with a transverse jet. AIAA J. 24, 429436.
Karagozian, A. R. 2010 Transverse jets and their control. Prog. Energy Combust. Sci. 36, 531553.
Karagozian, A. R. & Marble, F. E. 1986 Study of a diffusion flame in a stretched vortex. Combust. Sci. Technol. 45, 6584.
Kelso, R. M., Lim, T. T. & Perry, A. E. 1996 An experimental study of round jets in cross-flow. J. Fluid Mech. 306, 111144.
Kelso, R. M. & Smits, A. J. 1995 Horseshoe vortex systems resulting from the interaction between a laminar boundary layer and a transverse jet. Phys. Fluids 7, 153158.
Kerr, R. M. 1985 Higher-order derivative correlations and the alignment of small scale structures in isotropic numerical turbulence. J. Fluid Mech. 153, 3158.
Kothnur, P. S. & Clemens, N. T. 2005 Effects of unsteady strain rate on scalar dissipation structures in turbulent planar jets. Phys. Fluids 17, 125104.
Krothapalli, A., Lourenco, L. & Buchlin, J. M. 1990 Separated flow upstream of a jet in a crossflow. AIAA J. 28 (3), 414420.
Kuzo, D. M.1995 An experimental study of the turbulent transverse jet. PhD thesis, California Institute of Technology.
Kyle, D. M. & Sreenivasan, K. R. 1993 The instability and breakdown of a round variable-density jet. J. Fluid Mech. 249, 619664.
Lozano, A.1992 Laser-excited luminescent tracers for planar concentration measurements in gaseous jets. PhD thesis, Stanford University, Department of Mechanical Engineering.
Lozano, A., Yip, B. & Hanson, R. K. 1992 Acetone: a tracer for concentration measurements in gaseous flows by planar laser-induced fluorescence. Exp. Fluids 13, 369376.
Marble, F. E. & Broadwell, J. E.1977 The coherent flame model for turbulent chemical reactions. Project Squid Tech. Rep. TRW-9-PU.
Margason, R. J.1993 Fifty years of jet in cross flow research. AGARD-CP-534 1, 1–141.
Mathew, G., Mezic, I. & Petzold, L. 2005 A multiscale measure of mixing. Physica D 211 (1), 2346.
M’Closkey, R. T., King, J., Cortelezzi, L. & Karagozian, A. R. 2002 The actively controlled jet in crossflow. J. Fluid Mech. 452, 325335.
Megerian, S., Davitian, J., de B. Alves, L. S. & Karagozian, A. R. 2007 Transverse-jet shear-layer instabilities. Part 1. Experimental studies. J. Fluid Mech. 593, 93129.
Meyer, K. E., Pedersen, J. M. & Özcan, O. 2007 A turbulent jet in crossflow analysed with proper orthogonal decomposition. J. Fluid Mech. 583, 199227.
Michalke, A. 1984 Survey on jet instability theory. Prog. Aerosp. Sci. 21, 159199.
Miller, D. N., Yagle, P. J. & Hamstra, J. W.1999 Fluidic throat skewing for thrust vectoring in fixed-geometry nozzles. AIAA P. 99-0365.
Monkewitz, P. A., Lehmann, B., Barsikow, B. & Bechert, D. W. 1989 The spreading of self-excited hot jets by side jets. Phys. Fluids A 1, 446448.
Muldoon, F. & Acharya, S. 2010 Direct numerical simulation of pulsed jets in crossflow. Comput. Fluids 39, 17451773.
Oh, T. S. & Schetz, J. A. 1990 Finite element simulation of complex jets in a crossflow for v/stol applications. J. Aircraft 27, 389399.
Peters, N. 1986 Laminar flamelet concepts in turbulent combustion. In Twenty-first Symposium (International) on Combustion, pp. 12311250. The Combustion Institute.
Rehm, J. E. & Clemens, N. T.1999 The association of scalar dissipation rate layers and Oh zones with strain, vorticity, and 2D dilatation fields in turbulent non-premixed jets and jet flames. In Paper AIAA-99-0676, 37th Aerospace Sciences Conference, Reno, NV. American Institute of Aeronautics and Astronautics.
Schlatter, P., Bagheri, S. & Henningson, D. S. 2011 Self-sustained global oscillations in a jet in crossflow. Theor. Comput. Fluid Dyn. 25, 29146.
Shan, J. & Dimotakis, P. 2006 Reynolds-number effects and anisotropy in transverse-jet mixing. J. Fluid Mech. 566, 4796.
Shapiro, S., King, J., M’Closkey, R. T. & Karagozian, A. R. 2006 Optimization of controlled jets in crossflow. AIAA J. 44, 12921298.
Shoji, T.2017 Mixing and structural characteristics of unforced and forced jets in crossflow. PhD thesis, UCLA.
Sirovich, L. 1987 Turbulence and the dynamics of coherent structures. Q. Appl. Maths 45, 561590.
Smith, S. H. & Mungal, M. G. 1998 Mixing, structure and scaling of the jet in crossflow. J. Fluid Mech. 357, 83122.
Su, L. K. & Clemens, N. T. 2003 The structure of fine-scale scalar mixing in gas-phase planar turbulent jets. J. Fluid Mech. 488, 129.
Su, L. K. & Dahm, W. J. A. 1996 Scalar imaging velocimetry measurements of the velocity gradient tensor field in turbulent flows. II. Experimental results. Phys. Fluids 8, 18831906.
Su, L. K. & Mungal, M. G. 2004 Simultaneous measurements of scalar and velocity field evolution in turbulent crossflowing jets. J. Fluid Mech. 513, 145.
Sullivan, R., Wilde, B., Noble, D. R., Seitzman, J. M. & Lieuwen, T. C. 2014 Time-averaged characteristics of a reacting fuel jet in vitiated cross-low. Combust. Flame 161, 17921803.
Vedula, P., Yeung, P. K. & Fox, R. O. 2001 Dynamics of scalar dissipation in isotropic turbulence: a numerical and modelling study. J. Fluid Mech. 433, 2960.
Vernet, R., Thomas, L. & David, L. 2009 Analysis and reconstruction of a pulsed jet in crossflow by multi-plane snapshot pod. Exp. Fluids 47, 707720.
Wagner, J. A., Grib, S. W., Renfro, M. W. & Cetegen, B. M. 2015 Flowfield measurement and flame stabilization of a premixed reacting jet in vitiated crossflow. Combust. Flame 162 (10), 37113727.
Wang, G. H. & Clemens, N. T. 2004 Effects of imaging system blur on measurements of flow scalars and scalar gradients. Exp. Fluids 37, 194205.
Wieneke, B. 2005 Stereo-PIV using self-calibration on particle images. Exp. Fluids 39, 267280.
Yuan, L. L. & Street, R. L. 1998 Trajectory and entrainment of a round jet in crossflow. Phys. Fluids 10, 23232335.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Influence of the velocity field on scalar transport in gaseous transverse jets

  • L. Gevorkyan (a1), T. Shoji (a1), W. Y. Peng (a1) and A. R. Karagozian (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed