Skip to main content Accessibility help
×
Home

The influence of surfactant on the propagation of a semi-infinite bubble through a liquid-filled compliant channel

  • David Halpern (a1) and Donald P. Gaver III (a2)

Abstract

We investigate the influence of a soluble surfactant on the steady-state motion of a finger of air through a compliant channel. This study provides a basic model from which to understand the fluid–structure interactions and physicochemical hydrodynamics of pulmonary airway reopening. Airway closure occurs in lung diseases such as respiratory distress syndrome and acute respiratory distress syndrome as a result of fluid accumulation and surfactant insufficiency. This results in ‘compliant collapse’ with the airway walls buckled and held in apposition by a liquid occlusion that blocks the passage of air. Airway reopening is essential to the recovery of adequate ventilation, but has been associated with ventilator-induced lung injury because of the exposure of airway epithelial cells to large interfacial flow-induced pressure gradients. Surfactant replacement is helpful in modulating this deleterious mechanical stimulus, but is limited in its effectiveness owing to slow surfactant adsorption. We investigate the effect of surfactant on micro-scale models of reopening by computationally modelling the steady two-dimensional motion of a semi-infinite bubble propagating through a liquid-filled compliant channel doped with soluble surfactant. Many dimensionless parameters affect reopening, but we primarily investigate how the reopening pressure depends upon the capillary number (the ratio of viscous to surface tension forces), the adsorption depth parameter (a bulk concentration parameter) and the bulk Péclet number (the ratio of bulk convection to diffusion). These studies demonstrate a dependence of on , and suggest that a critical bulk concentration must be exceeded to operate as a low-surface-tension system. Normal and tangential stress gradients remain largely unaffected by physicochemical interactions – for this reason, further biological studies are suggested that will clarify the role of wall flexibility and surfactant on the protection of the lung from atelectrauma.

Copyright

Corresponding author

Email address for correspondence: dhalpern@as.ua.edu

References

Hide All
1. Amin, S. D. & Suki, B. 2012 Could dynamic ventilation waveforms bring about a paradigm shift in mechanical ventilation? J. Appl. Physiol. 112 (3), 333334.
2. Bilek, A. M., Dee, K. C. & Gaver, D. P. 2003 Mechanisms of surface-tension-induced epithelial cell damage in a model of pulmonary airway reopening. J. Appl. Physiol. 94, 770783.
3. Ferri, J. K. & Stebe, K. J. 2000 Which surfactants reduce surface tension faster? A scaling argument for diffusion-controlled adsorption. Adv. Colloid Interface Sci. 85, 6197.
4. Fletcher, C. A. J. & Srinivas, K. 1991 Computational Techniques for Fluid Dynamics. Springer.
5. Gaver, D. P. III, Halpern, D. & Jensen, O. E. 2005 Surfactant and airway liquid flows. In Lung Surfactant Function and Disorder (ed. Nag, K. ). Taylor & Francis.
6. Gaver, D. P. III, Halpern, D., Jensen, O. E. & Grotberg, J. B. 1996 The steady motion of a semi-infinite bubble through a flexible-walled channel. J. Fluid Mech. 319, 2565.
7. Gaver, D. P. III, Jacob, A. M., Bilek, A. M. & Dee, K. C. 2006 The significance of air–liquid interfacial stresses on low-volume ventilator-induced lung injury. In Ventilator-Induced Lung Injury (ed. Dreyfuss, D., Saumon, G. & Hubmayr, R. D. ). Taylor & Francis.
8. Gaver, D. P. III, Samsel, R. W. & Solway, J. 1990 Effects of surface tension and viscosity on airway reopening. J. Appl. Physiol. 69, 7485.
9. Ghadiali, S. N. & Gaver, D. P. III. 2000 An investigation of pulmonary surfactant physicochemical behaviour under airway reopening conditions. J. Appl. Physiol. 88, 493506.
10. Ghadiali, S. N. & Gaver, D. P. III. 2001 A dual-reciprocity boundary element method for evaluating bulk convective transport of surfactant in free-surface flows. J. Comput. Phys. 171, 534559.
11. Ghadiali, S. N. & Gaver, D. P. III. 2003 The influence of non-equilibrium surfactant dynamics on the flow of a semi-infinite bubble in a rigid cylindrical tube. J. Fluid Mech. 478, 165196.
12. Glindmeyer, H. W. IV, Smith, B. J. & Gaver, D. P. III. 2012 In situ enhancement of pulmonary surfactant function using temporary flow reversal. J. Appl. Physiol. 112, 149158.
13. Halpern, D., Fujioka, H., Takayama, S. & Grotberg, J. B. 2008 Liquid and surfactant delivery into pulmonary airways. Respir. Physiol. Neurobiol. 163, 222231.
14. Halpern, D. & Gaver, D. P. 1994 Boundary-element analysis of the time-dependent motion of a semiinfinite bubble in a channel. J. Comput. Phys. 115, 366375.
15. Halpern, D., Naire, S., Jensen, O. E. & Gaver, D. P. III. 2005 Unsteady bubble propagation in a flexible channel: predictions of a viscous stick–slip instability. J. Fluid Mech. 528, 5386.
16. Hazel, A. L. & Heil, M. 2003 Three-dimensional airway reopening: the steady propagation of a semi-infinite bubble into a buckled elastic tube. J. Fluid Mech. 478, 4770.
17. Hazel, A. L. & Heil, M. 2008 The influence of gravity on the steady propagation of a semi-infinite bubble into a flexible channel. Phys. Fluids 20.
18. Heil, M. 2000 Finite Reynolds number effects in the propagation of an air finger into a liquid-filled flexible-walled channel. J. Fluid Mech. 424, 2144.
19. Heil, M., Hazel, A. L. & Smith, J. A. 2008 Mechanics of airway closure. Respir. Physiol. Neurobiol. 163, 214221.
20. Hubmayr, R. D. 2002 Perspective on lung injury and recruitment: a skeptical look at the opening and collapse story. Am. J. Respir. Crit. Care Med. 165, 16471653.
21. Huh, D., Fujioka, H., Tung, Y. C., Futai, N., Paine, R. 3rd, Grotberg, J. B. & Takayama, S. 2007 Acoustically detectable cellular-level lung injury induced by fluid mechanical stresses in microfluidic airway systems. Proc. Natl Acad. Sci. USA 104, 18 88618 891.
22. Jacob, A. M. & Gaver, D. P. III. 2005 An investigation of the influence of cell topography on epithelial mechanical stresses during pulmonary airway reopening. Phys. Fluids 17 (3), 031502.
23. Jensen, O. E., Horsburgh, M. K., Halpern, D. & Gaver, D. P. 2002 The steady propagation of a bubble in a flexible-walled channel: asymptotic and computational models. Phys. Fluids 14, 443457.
24. Juel, A. & Heap, A. 2007 The reopening of a collapsed fluid-filled elastic tube. J. Fluid Mech. 572, 287310.
25. Kay, S. S., Bilek, A. M., Dee, K. C. & Gaver, D. P. 2004 Pressure gradient, not exposure duration, determines the extent of epithelial cell damage in a model of pulmonary airway reopening. J. Appl. Physiol. 97, 269276.
26. Krueger, M. A. & Gaver, D. P. III. 2000 A theoretical model of pulmonary surfactant multilayer collapse under oscillating area conditions. J. Colloid Interface Sci. 229, 353364.
27. Lambert, R. K., Wilson, T. A., Hyatt, R. E. & Rodarte, J. R. 1982 A computational model for expiratory flow. J. Appl. Physiol. 52, 4456.
28. Naire, S. & Jensen, O. E. 2005 Epithelial cell deformation during surfactant-mediated airway reopening: a theoretical model. J. Appl. Physiol. 99, 458471.
29. Notter, R. H. 2000 Lung Surfactants – Basic Science and Clinical Applications. Marcel Dekker.
30. Overby, D. R. 1997 A computational investigation of pulmonary airway reopening, Master of Science in Engineering. Tulane University.
31. Patankar, S. V. 1980 Numerical Heat Transfer and Fluid FLow. Hemisphere.
32. Perun, M. L. & Gaver, D. P. 3rd. 1995a An experimental model investigation of the opening of a collapsed untethered pulmonary airway. Trans. ASME: J. Biomech. Engng 117, 245253.
33. Perun, M. L. & Gaver, D. P. 3rd. 1995b Interaction between airway lining fluid forces and parenchymal tethering during pulmonary airway reopening. J. Appl. Physiol. 79, 17171728.
34. Pillert, J. E. & Gaver, D. 2009 Physicochemical effects enhance surfactant transport in pulsatile motion of a semi-infinite bubble. Biophys. J. 96, 312327.
35. Rubenfeld, G. D., Caldwell, E., Peabody, E., Weaver, J., Martin, D. P., Neff, M., Stern, E. J. & Hudson, L. D. 2005 Incidence and outcomes of acute lung injury. New Engl. J. Med. 353, 16851693.
36. Smith, B. J. & Gaver, D. P. 2008 The pulsatile propagation of a finger of air within a fluid-occluded cylindrical tube. J. Fluid Mech. 601, 123.
37. Smith, B. J., Lukens, S., Yamaguchi, E. & Gaver, D. P. III. 2012 Lagrangian transport properties of pulmonary interfacial flows. J. Fluid Mech. doi:10.1017/jfm.2011.391.
38. Stebe, K. J. & Bartes-Biesel, D. 1995 Marangoni effects of adsorption–desorption controlled surfactants on the leading end of an infinitely long bubble in a capillary. J. Fluid Mech. 286, 2548.
39. Stebe, K. J., Lin, S.-Y. & Maldarelli, C. 1991 Remobilizing surfactant retarded fluid particle interfaces. I. Stress-free conditions at the interfaces of micellar solutions of surfactants with fast sorption kinetics. Phys. Fluids. A, Fluid Dyn. 3, 320.
40. Stebe, K. J. & Maldarelli, C. 1994 Remobilizing surfactant retarded fluid particle interfaces. II. Controlling the surface mobility at interfaces of solution containing surface active components. J. Colloid Interface Sci. 163, 177189.
41. Thompson, J. F., Soni, B. K. & Weatherill, N. P. 1999 Handbook of Grid Generation. CRC Press.
42. Yalcin, H. C., Perry, S. F. & Ghadiali, S. N. 2007 Influence of airway diameter and cell confluence on epithelial cell injury in an in-vitro model of airway reopening. J. Appl. Physiol. 103, 17961807.
43. Yap, D. Y. K. & Gaver, D. P. 1998 The influence of surfactant on two-phase flow in a flexible- walled channel under bulk equilibrium conditions. Phys. Fluids 10, 18461863.
44. Zasadzinski, J. A., Stenger, P. C., Shieh, I. & Dhar, P. 2010 Overcoming rapid inactivation of lung surfactant: analogies between competitive adsorption and colloid stability. Biochim. Biophys. Acta. 1798, 801828.
45. Zimmer, M. E. IV, Williams, H. A. R. & Gaver, D. P. III. 2005 The pulsatile motion of a semi-infinite bubble in a channel: flow field, and transport of an inactive surface-associated contaminant. J. Fluid Mech. 537, 133.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed