Skip to main content Accessibility help
×
Home

The influence of initial conditions on turbulent mixing due to Richtmyer–Meshkov instability

  • B. THORNBER (a1), D. DRIKAKIS (a1), D. L. YOUNGS (a2) and R. J. R. WILLIAMS (a2)

Abstract

This paper investigates the influence of different three-dimensional multi-mode initial conditions on the rate of growth of a mixing layer initiated via a Richtmyer–Meshkov instability through a series of well-controlled numerical experiments. Results are presented for large-eddy simulation of narrowband and broadband perturbations at grid resolutions up to 3 × 109 points using two completely different numerical methods, and comparisons are made with theory and experiment. It is shown that the mixing-layer growth is strongly dependent on initial conditions, the narrowband case giving a power-law exponent θ ≈ 0.26 at low Atwood and θ ≈ 0.3 at high Atwood numbers. The broadband case uses a perturbation power spectrum of the form P(k) ∝ k−2 with a proposed theoretical growth rate of θ = 2/3. The numerical results confirm this; however, they highlight the necessity of a very fine grid to capture an appropriately broad range of initial scales. In addition, an analysis of the kinetic energy decay rates, fluctuating kinetic energy spectra, plane-averaged volume fraction profiles and mixing parameters is presented for each case.

Copyright

Corresponding author

Email address for correspondence: b.j.r.thornber@cranfield.ac.uk

Footnotes

Hide All

Contains material ©British Crown Copyright 2009/MoD.

Footnotes

References

Hide All
Almgren, A. S., Bell, J. B., Rendleman, C. A. & Zingale, M. 2006 Low Mach number modelling of type Ia supernovae. Part I. Hydrodynamics. Astrophys. J. 637, 922936.
Amendt, P., Colvin, J. D., Tipton, R. E., Hinkel, D. E., Edwards, M. J., Landen, O. L., Ramshaw, J. D., Suter, L. J., Varnum, W. S. & Watt, R. G. 2002 Indirect-drive noncryogenic double-shell ignition targets for the National Ignition Facility: design and analysis. Phys. Plasmas 9 (5), 22212233.
Barenblatt, G. I., Looss, G. & Joseph, D. D. 1983 Nonlinear Dynamics and Turbulence. Pitman Publishing.
Barnes, C. W., Batha, S. H., Dunne, A. M., Magelssen, G. R., Rothman, S., Day, R. D., Elliott, N. E., Haynes, D. A., Holmes, R. L., Scott, J. M., Tubbs, D. L., Youngs, D. L., Boehly, T. R. & Jaanimagi, P. 2002 Observation of mix in a compressible plasma in a convergent cylindrical geometry. Phys. Plasmas 9 (11), 44314438.
Bogey, C., de Cacqueray, N. & Bailly, C. 2009 A shock-capturing methodology based on adaptative spatial filtering for high-order nonlinear computations. J. Comput. Phys. 228, 14471465.
Chapman, P. R. & Jacobs, J. W. 2006 Experiments on the three-dimensional incompressible Richtmyer–Meshkov instability. Phys. Fluids 18, 074101.
Clark, T. T. & Zhou, Y. 2006 Growth rate exponents of Richtmyer–Meshkov mixing layers. J. Appl. Mech. 73, 461–268.
Cohen, R. H., Dannevik, W. P., Dimits, A. M., Eliason, D. E., Mirin, A. A., Zhou, Y., Porter, D. H. & Woodward, P. R. 2002 Three-dimensional simulation of a Richtmyer–Meshkov instability with a two-scale initial perturbation. Phys. Fluids 14 (10), 36923709.
Collins, B. D. & Jacobs, J. W. 2002 PLIF flow visualization and measurements of the Richtmyer–Meshkov instability of an air/SF6 interface. J. Fluid. Mech. 464, 113136.
Cook, A. W., Cabot, W. & Miller, P. L. 2004 The mixing transition in Rayleigh–Taylor instability. J. Fluid Mech. 511, 333362.
Cook, A. W. & Zhou, Y. 2002 Energy transfer in Rayleigh–Taylor instability. Phys. Rev. E 66, 026312.
Dahlburg, J. P., Fyfe, D. E., Gardner, J. H., Haan, S. W., Bodner, S. E. & Doolen, G. D. 1995 Three-dimensional multimode simulations of the ablative Rayleigh–Taylor instability. Phys. Plasmas 2 (6), 24532472.
Debar, R. 1974 A method in 2-D Eulerian hydrodynamics. Tech. Rep. UCID-196831. Lawrence Livermore National Laboratory.
Dimonte, G., Frerking, C. E. & Schneider, M. 1995 Richtmyer–Meshkov instability in the turbulent regime. Phys. Rev. Lett. 74, 48554858.
Dimonte, G. & Schneider, M. 1997 Turbulent Richtmyer–Meshkov instability experiments with strong radiatively driven shocks. Phys. Plasmas 4 (12), 43474357.
Dimonte, G. & Schneider, M. 2000 Density ratio dependence of Rayleigh–Taylor mixing for sustained and impulsive acceleration histories. Phys. Fluids 12, 304321.
Dimonte, G., Youngs, D. L., Dimits, A., Wunsch, S., Garasi, C., Andrews, M. J., Calder, A. C., MacNeice, P., Ricker, P., Weber, S., Marinak, M., Robinson, A., Ramaprabhu, P., Fryxell, B., Olson, K., Rosner, R., Biello, J., Dursi, L., Timmes, F., Tufo, H., Young, Y.-N. & Zingale, M. 2004 A comparative study of the turbulent Rayleigh–Taylor instability using high resolution three-dimensional numerical simulations: the alpha-group collaboration. Phys. Fluids 16 (5), 16681693.
Drazin, P. G. & Reid, W. H. 2004 Hydrodynamic Stability. Cambridge University Press.
Drikakis, D. 2003 Advances in turbulent flow computations using high-resolution methods. Prog. Aerosp. Sci. 39, 405424.
Drikakis, D., Hahn, M., Mosedale, A. & Thornber, B. 2009 Large eddy simulation using high-resolution and high-order methods. Phil. Trans. R. Soc. A 367 (1899), 29852997.
Drikakis, D. & Rider, W. 2004 High-Resolution Methods for Incompressible and Low-Speed Flows. Springer.
Drikakis, D. & Tsangaris, S. 1993 On the solution of the compressible Navier–Stokes equations using improved flux vector splitting methods. Appl. Math. Model. 17 (6), 282.
Fraley, G. 1986 Rayleigh–Taylor stability for a normal shock wave–density discontinuity interaction. Phys. Fluids 29, 376386.
Gauthier, S. & Bonnet, M. 1990 A k - ϵ model for turbulent mixing in shock-tube flows induced by Rayleigh–Taylor instability. Phys. Fluids A 2 (9), 16851694.
Godunov, S. K. 1959 A finite-difference method for the computation of discontinuous solutions of the equations of fluid dynamics. Mat. Sb. 47, 271295.
Goncharov, V. N. 2002 Analytical model of nonlinear, single-mode, classical Rayleigh–Taylor instability at arbitrary Atwood numbers. Phys. Rev. Lett. 88 (13), 134502.
Grinstein, F. F., Margolin, L. G. & Rider, W. J. (Ed.) 2007 Implicit Large Eddy Simulation: Computing Turbulent Fluid Dynamics. Cambridge University Press.
Hill, D. J., Pantano, C. & Pullin, D. I. 2006 Large-eddy simulation and multi-scale modelling of a Richtmyer–Meshkov instability with reshock. J. Fluid. Mech 557, 2961.
Holmes, R. L., Dimonte, G., Fryxell, B., Gittings, M. L., Grove, J. W., Schneider, M. S., Sharp, D. H., Velikovich, A. L., Weaver, R. P. & Zhang, Q. 1999 Richtmyer–Meshkov instability growth: experiment, simulation and theory. J. Fluid Mech. 389, 5579.
Huang, M.-J. & Leonard, A. 1994 Power-law decay of homogeneous turbulence at low Reynolds numbers. Phys. Fluids 6 (11), 37653775.
Inogamov, N. A. 1999 The role of Rayleigh–Taylor and Richtmyer–Meshkov instabilities in astrophysics: an introduction. Astrophys. Space Phys. 10, 1335.
Inogamov, N. 2006 Richtmyer–Meshkov turbulence. In Proceedings of the International Workshop on the Physics of Compressible Turbulent Mixing 10. Available online at: http://www.iwpctm.org/.
Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid. Mech. 285, 6994.
Kim, K. H. & Kim, C. 2005 Accurate, efficient and monotonic numerical methods for multi-dimensional compressible flows. Part II. Multi-dimensional limiting process. J. Comput. Phys. 208, 570615.
Kolmogorov, A. N. 1941 The local structure of turbulence in an incompressible fluid at very high Reynolds numbers. Dokl. Akad. Nauk. SSSR 30, 299.
van Leer, B. 1977 Towards the ultimate conservative difference scheme. Part IV. A new approach to numerical convection. J. Comput. Phys. 23, 276299.
Lesieur, M. & Metais, O. 1996 New trends in large-eddy simulations of turbulence. Annu. Rev. Fluid Mech. 28, 4582.
Llor, A. 2006 Invariants of free turbulent decay. arXiv:physics/0612220v1.
Meshkov, E. E. 1969 Instability of the interface of two gases accelerated by a shock wave. Fluid Dyn. 43 (5), 101104.
Mikaelian, K. O. 1989 Turbulent mixing generated by Rayleigh–Taylor and Richtmyer–Meshkov instabilities. Physica D 36, 343357.
Mosedale, A. & Drikakis, D. 2007 Assessment of very high-order of accuracy in LES models. J. Fluids Engng 129, 14971503.
Oron, D., Arazi, L., Kartoon, D., Rikanati, A., Alon, U. & Shvarts, D. 2001 Dimensionality dependence of the Rayleigh–Taylor and Richtmyer–Meshkov instability late-time scaling laws. Phys. Plasmas 8 (6), 28832889.
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.
Poujade, O. & Peybernes, M. 2010 Growth rate of Rayleigh–Taylor turbulent mixing layers from first principles. Phys. Rev. E 81 (1), 016316.
Prasad, J. K., Rasheed, A., Kumar, S. & Sturtevant, B. 2000 The late-time development of the Richtmyer–Meshkov instability. Phys. Fluids 12 (8), 21082115.
Ramaprabu, P. K. 2003 On the dynamics of Rayleigh–Taylor mixing. PhD thesis, Texas A&M University.
Ramshaw, J. D. 1998 Simple model for linear and nonlinear mixing at unstable fluid interfaces with variable acceleration. Phys. Rev. E 58 (5), 58345840.
Richtmyer, R. D. 1960 Taylor instability in shock acceleration of compressible fluids. Comm. Pure Appl. Math. 13, 297319.
Spiteri, R. J. & Ruuth, S. J. 2002 A class of optimal high-order strong-stability preserving time discretization methods. SIAM J. Numer. Anal. 40 (2), 469491.
Thornber, B. & Drikakis, D. 2007 Large-eddy simulation of multi-component compressible turbulent flows using high resolution methods. Comput. Fluids doi:10.1016/j.compfluid.2007.04.009.
Thornber, B. & Drikakis, D. 2008 Implicit large eddy simulation of a deep cavity using high resolution methods. AIAA J. 46 (10), 26342645.
Thornber, B., Mosedale, A. & Drikakis, D. 2007 On the implicit large eddy simulation of homogeneous decaying turbulence. J. Comput. Phys. 226, 19021929.
Thornber, B., Mosedale, A., Drikakis, D., Youngs, D. & Williams, R. 2008 An improved reconstruction method for compressible flows with low Mach number features. J. Comput. Phys. 227, 48734894.
Toro, E. F. 1997 Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer.
Vincent, A. & Meneguzzi, M. 1991 The spatial structure and statistical properties of homogeneous turbulence. J. Fluid Mech. 225, 120.
Youngs, D. L. 1982 Time-dependent multimaterial flow with large fluid distortion. In Numerical Methods for Fluid Dynamics, pp. 273285. Academic Press.
Youngs, D. L. 1991 Three-dimensional numerical simulation of turbulent mixing by Rayleigh–Taylor instability. Phys. Fluids A 3 (5), 13121320.
Youngs, D. L. 1994 Numerical simulation of mixing by Rayleigh–Taylor and Richtmyer–Meshkov instabilities. Laser Part. Beams 12, 725750.
Youngs, D. L. 2003 Application of MILES to Rayleigh–Taylor and Richtmyer–Meshkov mixing. Paper 2003-4102. AIAA.
Youngs, D. L. 2004 Effect of initial conditions on self-similar turbulent mixing. In Proceedings of the International Workshop on the Physics of Compressible Turbulent Mixing 9. Available online at: http://www.iwpctm.org/.
Zhang, Q. & Sohn, S.-I. 1997 Nonlinear theory of unstable fluid mixing driven by shock wave. Phys. Fluids 9 (4), 11061124.
Zhou, Y. 2001 A scaling analysis of turbulent flows driven by Rayleigh–Taylor and Richtmyer–Meshkov instabilities. Phys. Fluids 13 (2), 538543.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Related content

Powered by UNSILO

The influence of initial conditions on turbulent mixing due to Richtmyer–Meshkov instability

  • B. THORNBER (a1), D. DRIKAKIS (a1), D. L. YOUNGS (a2) and R. J. R. WILLIAMS (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.