Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-25T16:06:11.126Z Has data issue: false hasContentIssue false

Inertial settling of a sphere through an interface. Part 2. Sphere and tail dynamics

Published online by Cambridge University Press:  28 November 2017

Jean-Lou Pierson
Affiliation:
Institut de Mécanique des Fluides de Toulouse (IMFT), Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
Jacques Magnaudet*
Affiliation:
Institut de Mécanique des Fluides de Toulouse (IMFT), Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
*
Email address for correspondence: jmagnaud@imft.fr

Abstract

Selected situations in which a rigid sphere settles through a two-layer system obtained by superimposing two immiscible Newtonian fluids are studied using a combination of experiments and direct numerical simulations. By varying the viscosity of the two fluids and the sphere size and inertia, the flow conditions cover situations driven by capillary and viscous effects, in which case the sphere detaches slowly from the interface and may even rise for a period of time, as well as highly inertial cases where its motion is barely affected by the interface and essentially reacts to the change in the fluid viscosity and density. The evolutions of the sphere velocity, effective drag force and entrained volume of upper fluid are analysed. In most cases considered here, this entrained volume first takes the form of an axisymmetric tail which elongates as time proceeds until it pinches off at some point. We examine the post-pinch-off dynamics of this tail under various conditions. When the viscosity of the lower fluid is comparable or larger than that of the upper one, an end-pinching process initiated near the initial pinch-off position develops and propagates along the tail, gradually transforming it into a series of primary and satellite drops; the size of the former is correctly predicted by the linear stability theory. In contrast, when the lower fluid is much less viscous than the upper one, the tail recedes without pinching off again. During a certain stage of the process, the tip velocity keeps a constant value which is significantly underpredicted by the classical Taylor–Culick model. An improved theoretical prediction, shown to agree well with observations, is obtained by incorporating buoyancy effects resulting from the density difference between the two fluids. Spheres with large enough inertia settling in a low-viscosity lower fluid are found to exhibit specific tail dynamics prefiguring wake fragmentation. Indeed, an interfacial instability quickly develops near the top of the sphere, resulting in the formation of thin axisymmetric corollas surrounding the central part of the tail and propagating upwards. A simplified inviscid model considering the role of the boundary layer around the tail and including surface tension effects is found to predict correctly the characteristics of the observed instability which turns out to be governed by the Kelvin–Helmholtz mechanism.

Type
JFM Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: IFP Energies nouvelles, BP 3, 69360 Solaize, France.

References

Abaid, N., Adalsteinsson, D., Agyapong, A. & McLaughlin, R. M. 2004 An internal splash: Levitation of falling spheres in stratified fluids. Phys. Fluids 16, 15671580.CrossRefGoogle Scholar
Alabduljalil, S. & Rangel, R. H. 2006 Inviscid instability of an unbounded shear layer: effect of surface tension, density and velocity profile. J. Engng Math. 54, 99118.CrossRefGoogle Scholar
Aristoff, J. M. & Bush, J. W. M. 2009 Water entry of small hydrophobic spheres. J. Fluid Mech. 619, 4578.CrossRefGoogle Scholar
Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.Google Scholar
Bigot, B., Bonometti, T., Lacaze, L. & Thual, O. 2014 A simple immersed-boundary method for solid–fluid interaction in constant- and stratified-density flows. Comput. Fluids 97, 126142.CrossRefGoogle Scholar
Blanchette, F. & Shapiro, A. M. 2012 Drops settling in sharp stratification with and without Marangoni effects. Phys. Fluids 24, 042104.CrossRefGoogle Scholar
Boeck, T. & Zaleski, S. 2005 Viscous versus inviscid instability of two-phase mixing layers with continuous velocity profile. Phys. Fluids 17, 032106.CrossRefGoogle Scholar
Bonhomme, R., Magnaudet, J., Duval, F. & Piar, B. 2012 Inertial dynamics of air bubbles crossing a horizontal fluid–fluid interface. J. Fluid Mech. 707, 405443.CrossRefGoogle Scholar
Bonometti, T. & Magnaudet, J. 2007 An interface-capturing method for incompressible two-phase flows: validation and application to bubble dynamics. Intl J. Multiphase Flow 33, 109133.CrossRefGoogle Scholar
Brackbill, J. U., Kothe, D. B. & Zemach, C. 1992 A continuum method for modeling surface tension. J. Comput. Phys. 100, 335354.CrossRefGoogle Scholar
Brenner, M. P. & Gueyffier, D. 1999 On the bursting of viscous films. Phys. Fluids 11, 737739.CrossRefGoogle Scholar
Calmet, I. & Magnaudet, J. 1997 Large-eddy simulation of high-Schmidt number mass transfer in a turbulent channel flow. Phys. Fluids 9, 438455.CrossRefGoogle Scholar
Camassa, R., Khatri, S., McLaughlin, R. M., Prairie, J. C., White, B. L. & Yu, S. 2013 Retention and entrainment effects: experiments and theory for porous spheres settling in sharply stratified fluids. Phys. Fluids 25, 081701.CrossRefGoogle Scholar
Camassa, R., McLaughlin, R. M., Moore, M. N. J. & Yu, S. 2012 Stratified flows with vertical layering of density: experimental and theoretical study of flow congurations and their stability. J. Fluid Mech. 690, 571606.CrossRefGoogle Scholar
Chandrasekar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Oxford University Press.Google Scholar
Charru, F. & Hinch, E. J. 2000 Phase diagram of interfacial instabilities in a two-layer Couette flow and mechanism of the long-wave instability. J. Fluid Mech. 414, 195223.CrossRefGoogle Scholar
Cohen, I., Brenner, M. P., Eggers, J. & Nagel, S. R. 1998 Two fluid drop snap-off problem: experiments and theory. Phys. Rev. Lett. 83, 11471150.CrossRefGoogle Scholar
Culick, F. E. C. 1960 Comments on a ruptured soap film. J. Appl. Phys. 31, 11281129.CrossRefGoogle Scholar
Dietrich, N., Poncin, S. & Li, H. Z. 2011 Dynamical deformation of a flat liquid–liquid interface. Exp. Fluids 50, 12931303.CrossRefGoogle Scholar
Eggers, J. 1993 Universal pinching of 3D axisymmetric free-surface flow. Phys. Rev. Lett. 71, 34583460.CrossRefGoogle ScholarPubMed
Eggers, J. & Dupont, T. F. 1994 Drop formation in a one-dimensional approximation of the Navier–Stokes equation. J. Fluid Mech. 262, 205221.CrossRefGoogle Scholar
Eggers, J. & Fontelos, M. 2015 Singularities: Formation, Structure, and Propagation. Cambridge University Press.CrossRefGoogle Scholar
Eggers, J. & Villermaux, E. 2008 Physics of liquid jets. Rep. Prog. Phys. 71, 036601.CrossRefGoogle Scholar
Fabre, D., Tchoufag, J. & Magnaudet, J. 2012 The steady oblique path of buoyancy-driven disks and spheres. J. Fluid Mech. 707, 2436.CrossRefGoogle Scholar
Geller, A. S., Lee, S. H. & Leal, L. G. 1986 The creeping motion of a spherical particle normal to a deformable interface. J. Fluid Mech. 169, 2769.CrossRefGoogle Scholar
Govindarajan, R. & Sahu, K. C. 2014 Instabilities in viscosity-stratified flow. Annu. Rev. Fluid Mech. 46, 331353.CrossRefGoogle Scholar
Hartland, S. 1968 The approach of a rigid sphere to a deformable liquid/liquid interface. J. Colloid Interface Sci. 26, 383394.CrossRefGoogle Scholar
Hartland, S. 1969 The profile of the draining film between a rigid sphere and a deformable fluid–liquid interface. Chem. Engng Sci. 24, 987995.CrossRefGoogle Scholar
Hoepffner, J. & Paré, G. 2013 Recoil of a liquid filament: escape from pinch-off through creation of a vortex ring. J. Fluid Mech. 734, 183197.CrossRefGoogle Scholar
Hooper, A. P. 1985 Long-wave instability at the interface between two viscous fluids: thin layer effects. Phys. Fluids 28, 16131618.CrossRefGoogle Scholar
Hooper, A. P. & Boyd, W. G. C. 1983 Shear-flow instability at the interface between two viscous fluids. J. Fluid Mech. 128, 507528.CrossRefGoogle Scholar
Hooper, A. P. & Boyd, W. G. C. 1987 Shear-flow instability due to a wall and a viscosity discontinuity at the interface. J. Fluid Mech. 179, 201225.CrossRefGoogle Scholar
Huh, C. & Scriven, L. E. 1969 Shapes of axisymmetric fluid interfaces of unbounded extent. J. Colloid Interface Sci. 30, 323337.CrossRefGoogle Scholar
Ikeno, T. & Kajishima, T. 2007 Finite-difference immersed boundary method consistent with wall conditions for incompressible turbulent flow simulations. J. Comput. Phys. 226, 14851508.CrossRefGoogle Scholar
Jeffreys, G. V. & Davies, G. A. 1971 Coalescence of liquid droplets and liquid dispersion. In Recent Advances in Liquid–Liquid Extraction (ed. Hanson, C.), chap. 14, pp. 495584. Pergamon.CrossRefGoogle Scholar
Johnson, R. E. 1981 Stokes flow past a sphere coated with a thin fluid film. J. Fluid Mech. 110, 217238.CrossRefGoogle Scholar
Jones, A. F. & Wilson, S. D. R. 1978 The film drainage problem in droplet coalescence. J. Fluid Mech. 87, 263288.CrossRefGoogle Scholar
Keller, J. B. 1983 Breaking of liquid films and threads. Phys. Fluids 26, 34513453.CrossRefGoogle Scholar
Keller, J. B., King, A. & Ting, L. 1995 Blob formation. Phys. Fluids 7, 226228.CrossRefGoogle Scholar
Kemiha, M.2006 Etude expérimentale des écoulements diphasiques: phénomènes interfaciaux. PhD thesis, Inst. Nat. Polytech. Lorraine, Nancy, France.Google Scholar
Kempe, T. & Fröhlich, J. 2012 An improved immersed boundary method with direct forcing for the simulation of particle laden flows. J. Comput. Phys. 231, 36633684.CrossRefGoogle Scholar
Lee, S. H., Chadwick, R. S. & Leal, L. G. 1979 Motion of a sphere in the presence of a plane interface. Part 1. An approximate solution by generalization of the method of Lorentz. J. Fluid Mech. 93, 705726.CrossRefGoogle Scholar
Lister, J. R. & Stone, H. A. 1998 Capillary breakup of a viscous thread surrounded by another viscous fluid. Phys. Fluids 10, 27582764.CrossRefGoogle Scholar
Marmottant, P. & Villermaux, E. 2004a Fragmentation of stretched liquid ligaments. Phys. Fluids 16, 27322741.CrossRefGoogle Scholar
Marmottant, P. & Villermaux, E. 2004b On spray formation. J. Fluid Mech. 498, 73111.CrossRefGoogle Scholar
Maru, H. C., Wasan, D. T. & Kintner, R. C. 1971 Behavior of a rigid sphere at a liquid–liquid interface. Chem. Engng Sci. 26, 16151628.CrossRefGoogle Scholar
Matas, J. P. 2015 Inviscid versus viscous instability mechanism of an air–water mixing layer. J. Fluid Mech. 768, 375387.CrossRefGoogle Scholar
Mikami, T., Cox, R. G. & Mason, S. G. 1975 Breakup of extending liquid threads. Intl J. Multiphase Flow 2, 113138.CrossRefGoogle Scholar
Mittal, R. & Iaccarino, G. 2005 Immersed boundary methods. Annu. Rev. Fluid Mech. 37, 239261.CrossRefGoogle Scholar
Nakayama, Y. & Yamamoto, R. 2005 Simulation method to resolve hydrodynamic interactions in colloidal dispersions. Phys. Rev. E 71, 036707.Google ScholarPubMed
O’Brien, S. B. G. 1996 The meniscus near a small sphere and its relationship to line pinning of contact lines. J. Colloid Interface Sci. 183, 5156.CrossRefGoogle Scholar
Otto, T., Rossi, M. & Boeck, T. 2013 Viscous instability of a sheared liquid–gas interface: dependence on fluid properties and basic velocity profile. Phys. Fluids 25, 032103.CrossRefGoogle Scholar
Papageorgiou, D. T. 1995 On the breakup of viscous liquid threads. Phys. Fluids 7, 15291544.CrossRefGoogle Scholar
Pierson, J. L.2015 Traversée d’une interface entre deux fluides par une sphère. PhD thesis, Inst. Nat. Polytech. Toulouse, Toulouse, France (available at http://oatao.univ-toulouse.fr/15754/).Google Scholar
Pierson, J. L. & Magnaudet, J. 2017 Inertial settling of a sphere through an interface. Part 1: from sphere flotation to wake fragmentation. J. Fluid Mech. 835, 762807.CrossRefGoogle Scholar
Powers, T. R., Zhang, D., Goldstein, R. E. & Stone, H. A. 1998 Propagation of a topological transition: the Rayleigh instability. Phys. Fluids 10, 10521057.CrossRefGoogle Scholar
Prosperetti, A. & Tryggvason, G. 2007 Computational Methods for Multiphase Flows. Cambridge University Press.CrossRefGoogle Scholar
Rapacchietta, A. V. & Neumann, A. W. 1977 Force and free-energy analyses of small particles at fluid interfaces. Part II. Spheres. J. Colloid Interface Sci. 59, 555567.CrossRefGoogle Scholar
Rayleigh, Lord 1878 On the instability of liquid jets. Proc. Lond. Math. Soc. 10, 413.CrossRefGoogle Scholar
Rayleigh, Lord 1879 On the stability, or instability, of certain fluid motions. Proc. Lond. Math. Soc. 11, 5772.CrossRefGoogle Scholar
Ribe, N. M., Habibi, M. & Bonn, D. 2012 Liquid rope coiling. Annu. Rev. Fluid Mech. 44, 249266.CrossRefGoogle Scholar
Savva, N. & Bush, J. W. M. 2009 Viscous sheet retraction. J. Fluid Mech. 626, 211240.CrossRefGoogle Scholar
Shoukry, E., Hafez, M. & Hartland, S. 1975 Separation of drops from wetted surfaces. J. Colloid Interface Sci. 53, 261270.CrossRefGoogle Scholar
Smith, P. G. & Van de Den, T. G. M. 1985 The separation of a liquid drop from a stationary solid sphere in a gravitational field. J. Colloid Interface Sci. 105, 720.CrossRefGoogle Scholar
Smith, P. G. & Van de Ven, T. G. M. 1984 The effect of gravity on the drainage of a thin liquid film between a solid sphere and a liquid/fluid interface. J. Colloid Interface Sci. 100, 456464.CrossRefGoogle Scholar
Stone, H. A. 1994 Dynamics of drop deformation and breakup in viscous fluids. Annu. Rev. Fluid Mech. 26, 65102.CrossRefGoogle Scholar
Stone, H. A., Bentley, B. J. & Leal, L. G. 1986 An experimental study of transient effects in the breakup of viscous drops. J. Fluid Mech. 173, 131158.CrossRefGoogle Scholar
Stone, H. A. & Leal, L. G. 1989 Relaxation and breakup of an initially extended drop in an otherwise quiescent fluid. J. Fluid Mech. 198, 399427.CrossRefGoogle Scholar
Taylor, G. 1959 The dynamics of thin sheets of fluid. Part III. Disintegration of fluid sheets. Proc. R. Soc. Lond. A 253, 313321.Google Scholar
Ten Cate, A., Nieuwstad, C. H., Derksen, J. J. & Van den Akker, H. E. A. 2002 Particle imaging velocimetry experiments and lattice-Boltzmann simulations on a single sphere settling under gravity. Phys. Fluids 14, 40124025.CrossRefGoogle Scholar
Thompson, M. C., Leweke, T. & Hourigan, K. 2007 Sphere–wall collisions: vortex dynamics and stability. J. Fluid Mech. 575, 121148.CrossRefGoogle Scholar
Tjahjadi, M., Stone, H. A. & Ottino, J. M. 1992 Satellite and subsatellite formation in capillary breakup. J. Fluid Mech. 243, 297317.CrossRefGoogle Scholar
Tomotika, S. 1935 On the instability of a cylindrical thread of a viscous liquid surrounded by another viscous fluid. Proc. R. Soc. Lond. A 150, 322337.Google Scholar
Uhlmann, M. 2005 An immersed boundary method with direct forcing for the simulation of particulate flows. J. Comput. Phys. 209, 448476.CrossRefGoogle Scholar
Yick, K. Y., Torres, C. R., Peacock, T. & Stocker, R. 2009 Enhanced drag of a sphere settling in a stratified fluid at small Reynolds numbers. J. Fluid Mech. 632, 4968.CrossRefGoogle Scholar
Yih, C. S. 1967 Instability due to viscosity stratification. J. Fluid Mech. 27, 337352.CrossRefGoogle Scholar
Yuki, Y., Takeuchi, S. & Kajishima, T. 2007 Efficient immersed boundary method for strong interaction problem of arbitrary shape object with the self-induced flow. J. Fluid Sci. Technol. 2, 111.CrossRefGoogle Scholar