Skip to main content Accessibility help

Improved scaling laws for the shock-induced dispersal of a dense particle curtain

  • Edward P. DeMauro (a1), Justin L. Wagner (a2), Lawrence J. DeChant (a2), Steven J. Beresh (a2) and Aaron M. Turpin (a3)...


Experiments were performed within Sandia National Labs’ Multiphase Shock Tube to measure and quantify the shock-induced dispersal of a shock/dense particle curtain interaction. Following interaction with a planar travelling shock wave, schlieren imaging at 75 kHz was used to track the upstream and downstream edges of the curtain. Data were obtained for two particle diameter ranges ( $d_{p}=106{-}125$ , $300{-}355~\unicode[STIX]{x03BC}\text{m}$ ) across Mach numbers ranging from 1.24 to 2.02. Using these data, along with data compiled from the literature, the dispersion of a dense curtain was studied for multiple Mach numbers (1.2–2.6), particle sizes ( $100{-}1000~\unicode[STIX]{x03BC}\text{m}$ ) and volume fractions (9–32 %). Data were non-dimensionalized according to two different scaling methods found within the literature, with time scales defined based on either particle propagation time or pressure ratio across a reflected shock. The data show that spreading of the particle curtain is a function of the volume fraction, with the effectiveness of each time scale based on the proximity of a given curtain’s volume fraction to the dilute mixture regime. It is seen that volume fraction corrections applied to a traditional particle propagation time scale result in the best collapse of the data between the two time scales tested here. In addition, a constant-thickness regime has been identified, which has not been noted within previous literature.


Corresponding author

Email address for correspondence:


Hide All
Akiki, G., Jackson, T. L. & Balachandar, S. 2017 Pairwise interaction extended point-particle model for a random array of monodisperse spheres. J. Fluid Mech. 813, 882928.
Boiko, V. M., Kiselev, V. P., Kiselev, S. P., Papyrin, A. N., Poplavsky, S. V. & Formin, V. M. 1997 Shock wave interaction with a cloud of particles. Shock Waves 7, 275285.
Chang, E. J. & Kailasanath, K. 2003 Shock wave interactions with particles and liquid fuel droplets. Shock Waves 12, 333341.
Davis, S. L., Dittmann, T. B., Jacobs, G. B. & Don, W. S. 2013 Dispersion of a cloud of particles by a moving shock: effects of the shape, angle of rotation, and aspect ratio. J. Appl. Mech. Tech. Phys. 54 (4), 900912.
DeMauro, E. P., Wagner, J. L., Beresh, S. J. & Farias, P. A. 2017 Unsteady drag following shock wave impingement on a particle curtain measured using pulse-burst PIV. Phys. Rev. Fluids 2, 064301.
Goetsch, R. J. & Regele, J. D. 2015 Discrete element method prediction of particle curtain properties. Chem. Engng Sci. 137, 852861.
Houim, R. W. & Oran, E. S. 2016 A multiphase model for compressible granular-gaseous flows: formulation and initial tests. J. Fluid Mech. 789, 166220.
Kellenberger, M., Johansen, C., Ciccarelli, G. & Zhang, F. 2013 Dense particle cloud dispersion by a shock wave. Shock Waves 23 (5), 415430.
Kosinski, P. 2008 Numerical investigation of explosion suppression by inert particles in straight ducts. J. Hazard. Mater. 154, 981991.
Ling, Y., Wagner, J. L., Beresh, S. J., Kearney, S. P. & Balachandar, S. 2012 Interaction of a planar shock wave with a dense particle curtain: modeling and experiments. Phys. Fluids 24, 113301.
Lv, H., Wang, Z., Zhang, Y. & Li, J. 2018 Shock attenuation by densely packed micro-particle wall. Exp. Fluids 59, 140148.
McFarland, J. A., Black, W. J., Dahal, J. & Morgan, B. E. 2016 Computational study of the shock driven instability of a multiphase particle-gas system. Phys. Fluids 28, 024105.
Merzkirch, W. & Bracht, K. 1978 The erosion of dust by a shock wave in air: initial stages with laminar flow. Intl J. Multiphase Flow 41 (1), 8995.
Pinker, R. A. & Herbert, M. V. 1967 Pressure loss associated with compressible flow through square-mesh wire gauzes. J. Mech. Engng Sci. 9 (1), 1123.
Regele, J. D., Rabinovitch, J., Colonius, T. & Blanquart, G. 2014 Unsteady effects in dense, high speed, particle laden flows. Multiphase Flow 61, 113.
Rogue, X., Rodriguez, G., Haas, J. F. & Saurel, R. 1998 Experimental and numerical investigation of the shock-induced fluidization of a particles bed. Shock Waves 8 (1), 2945.
Sen, O., Gaul, N. J., Choi, K. K., Jacobs, G. & Udaykumar, H. S. 2017 Evaluation of kriging based surrogate models constructed from mesoscale computations of shock interaction with particles. J. Comput. Phys. 336, 235260.
Sen, O., Gaul, N. J., Choi, K. K., Jacobs, G. & Udaykumar, H. S. 2018 Evaluation of multifidelity surrogate modeling techniques to construct closure laws for drag in shock-particle interactions. J. Comput. Phys. 371, 434451.
Sweeney, M. R. & Valentine, G. A. 2017 Impact zone dynamics of dilute mono- and polydisperse jets and their implications for the initial conditions of pyroclastic density currents. Phys. Fluids 29, 093304.
Theofanous, T. G., Mitkin, V. & Chang, C. H. 2016 The dynamics of dense particle clouds subjected to shock waves. Part 1. Experiments and scaling laws. J. Fluid Mech. 792, 658681.
Theofanous, T. G., Mitkin, V. & Chang, C. H. 2018 Shock dispersal of dilute particle clouds. J. Fluid Mech. 841, 732745.
Vessiere, B. 2006 Detonations in gas-particle mixtures. J. Propul. Power 22 (6), 12691288.
Vorobieff, P., Anderson, M., Conroy, J., White, R., Truman, C. R. & Kumar, S. 2011 Vortex formation in a shock-accelerated gas induced by particle seeding. Phys. Rev. Lett. 106, 184503.
Wagner, J. L., Beresh, S. J., Kearney, S. P., Trott, W. M., Castaneda, J. N., Pruett, B. O. & Baer, M. R. 2012 A multiphase shock tube for shock wave interactions with dense particle fields. Exp. Fluids 52 (6), 15071517.
Wagner, J. L., DeMauro, E. P., Casper, K. M., Beresh, S. J., Lynch, K. P. & Pruett, B. O. 2018 Pulse-burst PIV of an impulsively started cylinder in a shock tube for Re > 105 . Exp. Fluids 59 (6), 2, 106–121.
Wagner, J. L., Kearney, S. P., Beresh, S. J., DeMauro, E. P. & Pruett, B. O. 2015 Flash X-ray measurements on the shock-induced dispersal of a dense particle curtain. Exp. Fluids 56 (213), 112.
Zhang, F., Frost, D. L., Thibault, P. A. & Murray, S. B. 2001 Explosive dispersal of solid particles. Shock Waves 10, 431443.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed