Skip to main content Accessibility help
×
Home

Impact jetting by a solid sphere

  • S. T. THORODDSEN (a1), T. G. ETOH (a2), K. TAKEHARA (a2) and Y. TAKANO (a2)

Abstract

We use a novel ultra-high-speed video camera to study the initial stage of the impact of a solid sphere onto a liquid surface, finding a high-speed horizontal jet which emerges immediately following the intial contact. For ${\hbox{\it Re}} > 2 \times 10^4$ the jet emerges when the horizontal contact between the sphere and the liquid is only 12% of its diameter. For the largest Reynolds numbers this jet can travel at more than 30 times the impact velocity of the sphere. This jetting occurs sooner and at much higher normalized velocities than has been observed previously. The breakup of the jet into a spray of droplets sometimes occurs through formation of pockets in the liquid sheet. Early in the impact, the energy transferred to the jet and the subsequent spray sheet is estimated to be much larger than the energy associated with the added mass inside the liquid pool. The jetting will therefore greatly increase the initial impact force on the sphere.

Copyright

MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed