Skip to main content Accessibility help
×
Home

Hydrodynamic interactions between aerosol particles in the transition regime

  • James Corson (a1), G. W. Mulholland (a1) and M. R. Zachariah (a1) (a2)

Abstract

We present a method for calculating the hydrodynamic interactions between particles in the kinetic (or transition regime), characterized by non-negligible particle Knudsen numbers. Such particles are often present in aerosol systems. The method is based on our extended Kirkwood–Riseman theory (Corson et al., Phys. Rev. E, vol. 95 (1), 2017c, 013103), which accounts for interactions between spheres using the velocity field around a translating sphere as a function of Knudsen number. Results for the two-sphere problem at small Knudsen numbers are in good agreement with those obtained using Felderhof’s interaction actions for mixed slip-stick boundary conditions, which are accurate to order $r^{-7}$ (Felderhof, Physica A, vol. 89 (2), 1977, pp. 373–384). The strength of the interactions decreases with increasing Knudsen number. Results for two fractal aggregates demonstrate that one can apply a point force approach for interactions between particles in the transition regime; the interaction tensor is similar to the Oseen tensor for continuum flow. Using this point force approach, we present an analysis for the settling of an unbounded cloud of particles. Our analysis shows that for sufficiently high volume fractions and cloud radii, the cloud behaves as a gas droplet in continuum flow even when the individual particles are small relative to the mean free path of the gas. The method presented here can be applied in a Brownian dynamics simulation analogous to Stokesian dynamics to study the behaviour of a dense aerosol system.

Copyright

Corresponding author

Email address for correspondence: mrz@umd.edu

References

Hide All
Batchelor, G. K. 1972 Sedimentation in a dilute dispersion of spheres. J. Fluid Mech. 52 (2), 245268.
Batchelor, G. K. 1976 Brownian diffusion of particles with hydrodynamic interaction. J. Fluid Mech. 74 (1), 129.
Bhatnagar, P. L., Gross, E. P. & Krook, M. 1954 A model for collision processes in gases. Part I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94 (3), 511525.
Brady, J. F. & Bossis, G. 1988 Stokesian dynamics. Annu. Rev. Fluid Mech. 20 (1), 111157.
Brenner, H. 1961 The slow motion of a sphere through a viscous fluid towards a plane surface. Chem. Engng Sci. 16 (3–4), 242251.
Brenner, H. 1967 Coupling between the translational and rotational Brownian motions of rigid particles of arbitrary shape. Part II. General theory. J. Colloid Interface Sci. 23 (3), 407436.
Burgers, J. M. 1995 Hydrodynamics on the influence of the concentration of a suspension upon the sedimentation velocity (in particular for a suspension of spherical particles). In Selected Papers of J. M. Burgers, pp. 452477. Springer.
Carrasco, B. & García de la Torre, J. 1999 Improved hydrodynamic interaction in macromolecular bead models. J. Chem. Phys. 111 (10), 48174826.
Chen, Z.-Y., Deutch, J. M. & Meakin, P. 1984 Translational friction coefficient of diffusion limited aggregates. J. Chem. Phys. 80 (6), 29822983.
Corson, J., Mulholland, G. W. & Zachariah, M. R. 2017a Analytical expression for the friction coefficient of DLCA aggregates based on extended Kirkwood–Riseman theory. Aerosol Sci. Technol. 51 (6), 766777.
Corson, J., Mulholland, G. W. & Zachariah, M. R. 2017b Calculating the rotational friction coefficient of fractal aerosol particles in the transition regime using extended Kirkwood–Riseman theory. Phys. Rev. E 96 (1), 013110.
Corson, J., Mulholland, G. W. & Zachariah, M. R. 2017c Friction factor for aerosol fractal aggregates over the entire Knudsen range. Phys. Rev. E 95 (1), 013103.
Corson, J., Mulholland, G. W. & Zachariah, M. R. 2018a Analytical expression for the rotational friction coefficient of DLCA aggregates over the entire Knudsen regime. Aerosol Sci. Technol. 52 (2), 209221.
Corson, J., Mulholland, G. W. & Zachariah, M. R. 2018b The effect of electric field induced alignment on the electrical mobility of fractal aggregates. Aerosol Sci. Technol. 52 (5), 524535.
Dahneke, B. E. 1973 Slip correction factors for nonspherical bodies. Part III. The form of the general law. J. Aero. Sci. 4 (2), 163170.
Ermak, D. L. & McCammon, J. A. 1978 Brownian dynamics with hydrodynamic interactions. J. Chem. Phys. 69 (4), 13521360.
Felderhof, B. U. 1977 Hydrodynamic interaction between two spheres. Physica A 89 (2), 373384.
Friedlander, S. K. 2000 Smoke, Dust, and Haze: Fundamentals of Aerosol Dynamics, 2nd edn. Topics in Chemical Engineering, vol. 2. Oxford University Press.
Fuchs, N. A. 1964 The Mechanics of Aerosols. Pergamon Press.
Goldman, A. J., Cox, R. G. & Brenner, H. 1966 The slow motion of two identical arbitrarily oriented spheres through a viscous fluid. Chem. Engng Sci. 21 (12), 11511170.
Happel, J. & Brenner, H. 1965 Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media, Prentice Hall International Series in the Physical and Chemical Engineering Sciences, vol. 1. Prentice Hall.
Heine, M. C. & Pratsinis, S. E. 2007 Brownian coagulation at high concentration. Langmuir 23 (19), 98829890.
Heinson, W. R., Pierce, F., Sorensen, C. M. & Chakrabarti, A. 2014 Crossover from ballistic to Epstein diffusion in the free-molecular regime. Aerosol Sci. Technol. 48 (7), 738746.
Kirkwood, J. G. & Riseman, J. 1948 The intrinsic viscosities and diffusion constants of flexible macromolecules in solution. J. Chem. Phys. 16 (6), 565573.
Kogan, M. N. 1958 On the equations of motion of a rarefied gas. Z. Angew. Math. Mech. J. Appl. Math. Mech. 22 (4), 597607.
Lattuada, M. 2011 Predictive model for diffusion-limited aggregation kinetics of nanocolloids under high concentration. J. Phys. Chem. B 116 (1), 120129.
Lattuada, M., Wu, H. & Morbidelli, M. 2003 Hydrodynamic radius of fractal clusters. J. Colloid Interface Sci. 268 (1), 96105.
Li, M., Mulholland, G. W. & Zachariah, M. R. 2014 Understanding the mobility of nonspherical particles in the free molecular regime. Phys. Rev. E 89 (2), 022112.
Loyalka, S. K. 1990 Slip and jump coefficients for rarefied gas flows: variational results for Lennard-Jones and n (r)-6 potentials. Physica A 163 (3), 813821.
Loyalka, S. K. 1992 Motion of a sphere in a gas: numerical solution of the linearized Boltzmann equation. Phys. Fluids A 4 (5), 10491056.
Mackaplow, M. B. & Shaqfeh, E. S. G. 1998 A numerical study of the sedimentation of fibre suspensions. J. Fluid Mech. 376, 149182.
Mackowski, D. W. 2006 Monte Carlo simulation of hydrodynamic drag and thermophoresis of fractal aggregates of spheres in the free-molecule flow regime. J. Aero. Sci. 37 (3), 242259.
Matsuoka, Y., Fukasawa, T., Higashitani, K. & Yamamoto, R. 2012 Effect of hydrodynamic interactions on rapid Brownian coagulation of colloidal dispersions. Phys. Rev. E 86 (5), 051403.
Mazur, P. & Van Saarloos, W. 1982 Many-sphere hydrodynamic interactions and mobilities in a suspension. Physica A 115 (1–2), 2157.
Mountain, R. D., Mulholland, G. W. & Baum, H. 1986 Simulation of aerosol agglomeration in the free molecular and continuum flow regimes. J. Colloid Interface Sci. 114 (1), 6781.
Pratsinis, S. E. 1998 Flame aerosol synthesis of ceramic powders. Prog. Energy Combust. Sci. 24 (3), 197219.
Rotne, J. & Prager, S. 1969 Variational treatment of hydrodynamic interaction in polymers. J. Chem. Phys. 50 (11), 48314837.
Smoluchowski, M. 1912 On the Practical Applicability of Stokes’ Law of Resistance, and the Modifications of it Required in Certain Cases. Proc. 5th Intern. Cong. Math., vol. 2, p. 192.
Sorensen, C. M. 2011 The mobility of fractal aggregates: a review. Aerosol Sci. Technol. 45 (7), 765779.
Sorensen, C. M. & Chakrabarti, A. 2011 The sol to gel transition in irreversible particulate systems. Soft Matt. 7 (6), 22842296.
Sorensen, C. M., Hageman, W. B., Rush, T. J., Huang, H. & Oh, C. 1998 Aerogelation in a flame soot aerosol. Phys. Rev. Lett. 80 (8), 17821785.
Stimson, M. & Jeffery, G. B. 1926 The motion of two spheres in a viscous fluid. Proc. R. Soc. Lond. A 111 (757), 110116.
Takata, S., Sone, Y. & Aoki, K. 1993 Numerical analysis of a uniform flow of a rarefied gas past a sphere on the basis of the Boltzmann equation for hard-sphere molecules. Phys. Fluids A 5 (3), 716737.
García de la Torre, J. & Rodes, V. 1983 Effects from bead size and hydrodynamic interactions on the translational and rotational coefficients of macromolecular bead models. J. Chem. Phys. 79 (5), 24542460.
Yamakawa, H. 1970 Transport properties of polymer chains in dilute solution: hydrodynamic interaction. J. Chem. Phys. 53 (1), 436443.
Zhang, C., Thajudeen, T., Larriba, C., Schwartzentruber, T. E. & Hogan, C. J. Jr 2012 Determination of the scalar friction factor for nonspherical particles and aggregates across the entire Knudsen number range by direct simulation Monte Carlo (DSMC). Aerosol Sci. Technol. 46 (10), 10651078.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Hydrodynamic interactions between aerosol particles in the transition regime

  • James Corson (a1), G. W. Mulholland (a1) and M. R. Zachariah (a1) (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed