Skip to main content Accessibility help

Hydrodynamic and thermodiffusive instability effects on the evolution of laminar planar lean premixed hydrogen flames

  • C. Altantzis (a1), C. E. Frouzakis (a1), A. G. Tomboulides (a2), M. Matalon (a3) and K. Boulouchos (a1)...


Numerical simulations with single-step chemistry and detailed transport are used to study premixed hydrogen/air flames in two-dimensional channel-like domains with periodic boundary conditions along the horizontal boundaries as a function of the domain height. Both unity Lewis number, where only hydrodynamic instability appears, and subunity Lewis number, where the flame propagation is strongly affected by the combined effect of hydrodynamic and thermodiffusive instabilities are considered. The simulations aim at studying the initial linear growth of perturbations superimposed on the planar flame front as well as the long-term nonlinear evolution. The dispersion relation between the growth rate and the wavelength of the perturbation characterizing the linear regime is extracted from the simulations and compared with linear stability theory. The dynamics observed during the nonlinear evolution depend strongly on the domain size and on the Lewis number. As predicted by the theory, unity Lewis number flames are found to form a single cusp structure which propagates unchanged with constant speed. The long-term dynamics of the subunity Lewis number flames include steady cell propagation, lateral flame movement, oscillations and regular as well as chaotic cell splitting and merging.


Corresponding author

Email address for correspondence:


Hide All
1. Altantzis, C., Frouzakis, C. E., Tomboulides, A. G., Kerkemeier, S. G. & Boulouchos, K. 2011 Detailed numerical simulations of intrinsically unstable two-dimensional planar lean premixed hydrogen/air flames. Proc. Combust. Inst. 33, 12611268.
2. Barenblatt, G. I., Zeldovich, Y. B. & Istratov, A. G. 1962 On diffusional-thermal stability of a laminar flame. J. Appl. Mech. Tech. 4, 2126.
3. Bradley, D., Cresswell, T. M. & Puttock, J. S. 2001 Flame acceleration due to flame-induced instabilities in large scale explosions. Combust. Flame 124, 551559.
4. Bradley, D., Sheppard, C. G. W., Woolley, R., Greenhalgh, D. A. & Lockett, R. D. 2000 The development and structure of flame instabilities and cellularity at low Markstein numbers in explosions. Combust. Flame 122, 195209.
5. Bychkov, V. V. 1998 Nonlinear equation for a curved stationary flame and the flame velocity. Phys. Fluids 10, 20912098.
6. Bychkov, V. V. & Liberman, M. A. 2000 Dynamics and stability of premixed flames. Phys. Rep. 325, 115237.
7. Byrne, G. D. & Hindmarsh, A. C. 1999 PVODE, an ODE solver for parallel computers. Intl J. High Perform. Comput. Appl. 13, 354365.
8. Candel, S. M. & Poinsot, T. J. 1990 Flame stretch and the balance equation for the flame area. Combust. Sci. Technol. 70 (1–3), 115.
9. Chakraborty, N. & Cant, R. S. 2004 Unsteady effects of strain rate and curvature on turbulent premixed flames in an inflow-outflow configuration. Combust. Flame 137, 129147.
10. Chen, J. H. & Im, H. G. 1998 Correlation of flame speed with stretch in turbulent premixed methane/air flames. Proc. Combust. Inst. 27, 819826.
11. Chu, B. T. & Kovasznay, X. 1958 Non-linear interactions in a viscous heat conducting compressible gas. J. Fluid Mech. 3 (5), 494514.
12. Chung, S. H. & Law, C. K. 1984 An invrariant derivation of flame stretch. Combust. Flame 55, 1984.
13. Clavin, P. 1985 Dynamic behavior of premixed flame fronts in laminar and turbulent flows. Prog. Energy Combust. Sci. 11, 159.
14. Creta, F., Fogla, N. & Matalon, M. 2011 Turbulent propagation of premixed fames in the presence of Darrieus–Landau instability. Combust. Theor. Model. 15, 267298.
15. Creta, F. & Matalon, M. 2011 Strain rate effects on the nonlinear development of hydrodynamically unstable flames. Proc. Combust. Inst. 33, 10871094.
16. Darrieus, G. 1946 Propagation d’un front de flamme. Sixth International Congress of Applied Mathematics.
17. Day, M., Bell, J., Bremer, P.-T., Pascucci, V., Becknera, V. & Lijewski, M. 2009 Turbulence effects on cellular burning structures in lean premixed hydrogen flames. Combust. Flame 156 (5), 10351045.
18. Denet, B. & Haldenwang, P. 1992 Numerical study of thermal-diffusive instability of premixed flames. Combust. Sci. Technol. 86, 199221.
19. Denet, B. & Haldenwang, P. 1995 A numerical study of premixed flames Darrieus-Landau instability. Combust. Sci. Technol. 104, 143167.
20. Deville, M. O., Fischer, P. F. & Mund, E. H. 2002 High-order Methods for Incompressible Fluid Flows. Cambridge University Press.
21. Fischer, P. F., Lottes, J. W. & Kerkemeier, S. G. 2008 nek5000 Web page.
22. Frankel, M. L. & Sivashinsky, G. I. 1982 The effect of viscosity on hydrodynamic stability of a plane flame front. Combust. Sci. Technol. 29, 207224.
23. Grcar, J. F., Bell, J. B. & Day, M. S. 2009 The soret effect in naturally propagating, premixed, lean, hydrogen air flames. Proc. Combust. Inst. 32, 11731180.
24. Groff, E. G. 1982 The cellular nature of confined spherical propane-air flames. Combust. Flame 48, 51.
25. Haworth, D. C. & Poinsot, T. J. 1992 Numerical simulations of Lewis number effects in turbulent premixed flames. J. Fluid Mech. 244, 405436.
26. Kadowaki, S. 1997 Numerical study on lateral movement of cellular flames. Phys. Rev. E 56, 29662971.
27. Kadowaki, S. & Hasegawa, T. 2005 Numerical simulation of dynamics of premixed flames: flame instability and vortex–flame interaction. Prog. Energy Combust. Sci. 31, 193241.
28. Kadowaki, S., Suzuki, H. & Kobayashi, H. 2005 The unstable behavior of cellular premixed flames induced by intrinsic instability. Proc. Combust. Inst. 30, 169176.
29. Kang, S. H., Baek, S. W. & Im, H. G. 2006 Effects of heat and momentum losses on the stability of premixed flames in a narrow channel. Combust. Theor. Model. 10, 659681.
30. Karlin, V. 2002 Celular flames may exhibit a nonmodal transient instability. Proc. Combust. Inst. 29 (2), 15371542.
31. Kee, R. J., Dixon-Lewis, G., Warnatz, J., Coltrin, M. E. & Miller, J. A. 1996 a A Fortran computer code package for the evaluation of gas-phase multicomponent transport properties. Tech. Rep. SAND86-8246. Sandia National Laboratories.
32. Kee, R. J., Rupley, F. M. & Miller, J. A. 1996 b Chemkin II: a Fortran chemical kinetics package for the analysis of gas-phase chemical kinetics. Tech. Rep. SAND89-8009B. Sandia National Laboratories.
33. Kurdyumov, V. N., Pizza, G., Frouzakis, C. E. & Mantzaras, J. 2009 Dynamics of premixed flames in a narrow channel with a step-wise wall temperature. Combust. Flame 156, 21902200.
34. Landau, L. 1944 On the theory of slow combustion. Acta Physicochim. USSR 19, 7785.
35. Law, C. K. 2006 Propagation, structure, and limit phenomena of laminar flames at elevated pressures. Combust. Sci. Technol. 178, 335360.
36. Li, J., Zhao, Z., Kazakov, A. & Dryer, F. L. 2004 An updated comprehensive kinetic model of hydrogen combustion. Intl J. Chem. Kinet. 36, 566575.
37. Markstein, G. H. 1951 Experimental and theoretical studies of flame front stability. J. Aeronaut. Sci. 18, 199220.
38. Markstein, G. H. 1964 Nonsteady Flame Propagation. The Macmillan Company.
39. Matalon, M. 1983 On flame stretch. Combust. Sci. Technol. 31, 169181.
40. Matalon, M. 2007 Intrinsic flame instabilities in premixed and nonpremixed combustion. Annu. Rev. Fluid Mech. 39 (1), 163191.
41. Matalon, M., Cui, C. & Bechtold, J. K. 2003 Hydrodynamic theory of premixed flames: effects of stoichiometry, variable transport coefficients and arbitrary reaction orders. J. Fluid Mech. 487, 179210.
42. Matalon, M. & Matkowsky, B. J. 1982 Flames as gasdynamic discontinuities. J. Fluid Mech. 124, 239259.
43. Michelson, D. M. & Sivashinsky, G. I. 1977 Nonlinear analysis of hydrodynamic instability in laminar flames - II. Numerical experiments. Acta Astronaut. 4, 12071221.
44. Michelson, D. M. & Sivashinsky, G. I. 1982 Thermal-expansion induced cellular flames. Combust. Flame 48, 211217.
45. Palm-Lewis, A. & Strehlow, R. A. 1969 On the propagation of turbulent flames. Combust. Flame 13, 111119.
46. Patera, A. T. 1984 A spectral element method or fluid dynamics: laminar low in a channel expansion. J. Comput. Phys. 58, 468488.
47. Patnaik, G., Kailasanath, K., Oran, E. S. & Laskey, K. J. 1988 Detailed numerical simulations of cellular flames. Proc. Combust. Inst. 22, 15171526.
48. Pelce, P. & Clavin, P. 1982 Influence of hydrodynamics and diffusion upon the stability limits of laminar premixed flames. J. Fluid Mech. 124, 219237.
49. Peters, N., Terhoeven, P., Chen, J. H. & Echekki, T. 1998 Statistics of flame displacement speeds from computations of 2-D unsteady methane-air flames. Proc. Combust. Inst. 27, 833839.
50. Poinsot, T. & Veynante, D. 2005 Theoretical and Numerical Combustion. R.T. Edwards, Inc.
51. Rastigejev, Y. & Matalon, M. 2006a Nonlinear evolution of hydrodynamically unstable premixed flames. J. Fluid Mech. 554, 371392.
52. Rastigejev, Y. & Matalon, M. 2006b Numerical simulation of flames as gas-dynamic discontinuities. Combust. Theor. Model. 10, 459481.
53. Rehm, R. G. & Baum, H. R. 1978 Equations of motion for thermally driven, buoyant flows. J. Res. Natl Bur. Stand. 83 (3), 97308.
54. Rupley, F. M., Kee, R. J. & Miller, J. A. 1995 PREMIX: a Fortran program for modeling steady laminar one-dimensional premixed flames. Tech. Rep. SAND85-8240. Sandia National Laboratories.
55. Sharpe, G. J. 2003 Linear stability of planar premixed flames: reactive Navier–Stokes equations with finite activation energy and arbitrary lewis number. Combust. Theor. Model. 7, 4565.
56. Sharpe, G. J. & Falle, S. A. E. G. 2006 Nonlinear cellular instabilities of planar premixed flames: numerical simulations of the reactive Navier–Stokes equations. Combust. Theor. Model. 10, 483514.
57. Sharpe, G. J. & Falle, S. A. E. G. 2011 Numerical simulations of premixed flame cellular instability for a simple chain-branching model. Combust. Flame 158, 925934.
58. Sivashinsky, G. I. 1977a Nonlinear analysis of hydrodynamic instability in laminar flames: I-derivation of basic equations. Acta Astronaut. 4, 11771206.
59. Sivashinsky, G. I. 1977b Diffusional-thermal theory of cellular flames. Combust. Sci. Technol. 15, 137146.
60. Sivashinsky, G. I. 1983 Instabilities, pattern formation, and turbulence in flames. Annu. Rev. Fluid Mech. 15, 179199.
61. Sun, C. J., Sung, C. J., He, L. & Law, C. K. 1999 Dynamics of weakly stretched flames: quantitative description and extraction of global flame parameters. Combust. Flame 118, 108128.
62. Tomboulides, A. G., Lee, J. C. Y. & Orszag, S. A. 1997 Numerical simulation of low Mach number reactive flows. J. Sci. Comput. 12, 139167.
63. Tomboulides, A. G. & Orszag, S. A. 1998 A quasi-two-dimensional benchmark problem for low Mach number compressible codes. J. Comput. Phys. 146, 691706.
64. Vaynblat, D. & Matalon, M. 2000a Stability of pole solutions for planar propagating flames. I. Exact eigenvalues and eigenfunctions. SIAM J. Appl. Math. 60 (2), 679702.
65. Vaynblat, D. & Matalon, M. 2000b Stability of pole solutions for planar propagating flames. II. Properties of the eigenvalues and eigenfunctions with implications to flame stability. SIAM J. Appl. Maths 60 (2), 703728.
66. Williams, F. A. 1985 Combustion Theory, 2nd edn. Benjamin Cummins.
67. Yuan, J., Ju, Y. & Law, C. K. 2005 Coupled hydrodynamic and diffusional-thermal instabilities in flame propagation at subunity Lewis numbers. Phys. Fluids 17, 10631072.
68. Yuan, J., Ju, Y. & Law, C. K. 2007 On flame-front instability at elevated pressures. Proc. Combust. Inst. 31, 12671274.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Hydrodynamic and thermodiffusive instability effects on the evolution of laminar planar lean premixed hydrogen flames

  • C. Altantzis (a1), C. E. Frouzakis (a1), A. G. Tomboulides (a2), M. Matalon (a3) and K. Boulouchos (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed