Abéguilé, F., Boudesocque-Dubois, C., Clarisse, J.-M., Gauthier, S. & Saillard, Y.
2006
Linear perturbation amplification in self-similar ablation flows of inertial confinement fusion. Phys. Rev. Lett.
97, 035002.
Atzeni, S. & Meyer-ter-Vehn, J.
2004
The Physics of Inertial Fusion. Oxford University Press.
Bajac, J.1973 Etude d’une classe de solutions des écoulements plan compressibles avec transfert radiatif. Tech. Rep. CEA-R-4482. Commissariat à l’Energie Atomique.
Betti, R., Goncharov, V. N., Mccrory, R. L., Sorotokin, P. & Verdon, C. P.
1996
Self-consistent stability analysis of ablation fronts in inertial confinement fusion. Phys. Plasmas
3 (5), 2122–2128.
Boudesocque-Dubois, C.2000 Perturbations linéaires d’une solution autosemblable de l’hydrodynamique avec conduction non linéaire. PhD thesis, Université Pierre et Marie Curie/Paris 6.
Boudesocque-Dubois, C., Clarisse, J.-M. & Gauthier, S.
2001
Hydrodynamic stability of ablation fronts: linear perturbation of a self-similar solution. In ECLIM 2000: 26th European Conference on Laser Interaction with Matter (ed. Kálal, M., Rohlena, K. & Šiňor, M.), Proceedings of SPIE, Vol. 4424, pp. 220–223. SPIE.
Boudesocque-Dubois, C., Gauthier, S. & Clarisse, J.-M.
2008
Self-similar solutions of unsteady ablation flows in inertial confinement fusion. J. Fluid Mech.
603, 151–178.
Boudesocque-Dubois, C., Lombard, V., Gauthier, S. & Clarisse, J.-M.
2013
An adaptive multidomain Chebyshev method for nonlinear eigenvalue problems: application to self-similar solutions of gas dynamics equations with nonlinear heat conduction. J. Comput. Phys.
235, 723–741.
Brun, L., Dautray, R., Delobeau, F., Patou, C., Perrot, F., Reisse, J.-M., Sitt, B. & Watteau, J.-P.
1977
Physical models and mathematical simulation of laser-driven implosion and their relations with experiments. In Laser Interaction and Related Plasma Phenomena (ed. Schwarz, H. J. & Hora, H.), vol. 4B, pp. 1059–1080. Plenum Publising Corp.
Buresi, E.
et al.
1986
Laser program development at CEL-V: overview of recent experimental results. Laser Part. Beams
4, 531–544.
Bychenkov, V. Yu. & Rozmus, W.
2015
Radiative heat transport instability in a laser produced inhomogeneous plasma. Phys. Plasmas
22, 082705.
Bychkov, V., Modestov, M. & Law, C. K.
2015
Combustion phenomena in modern physics: I. Inertial confinement fusion. Prog. Energy Combust. Sci.
47, 32–59.
Chu, B.-T. & Kovásznay, L. S. G.
1958
Non-linear interactions in a viscous heat-conducting compressible gas. J. Fluid Mech.
3, 494–514.
Clarisse, J.-M., Boudesocque-Dubois, C. & Gauthier, S.
2008
Linear perturbation response of self-similar ablative flows relevant to inertial confinement fusion. J. Fluid Mech.
609, 1–48.
Clarisse, J.-M., Gauthier, S., Dastugue, L., Vallet, A. & Schneider, N.
2016
Transient effects in unstable ablation fronts and mixing layers in HEDP. Phys. Scr.
91, 074005.
Coggeshall, S. V. & Axford, R. A.
1986
Lie group invariance properties of radiation hydrodynamics equations and their associated similarity solutions. Phys. Fluids
29, 2398–2420.
Elliott, L. A.
1960
Similarity methods in radiation hydrodynamics. Proc. R. Soc. Lond. A
258, 287–301.
Fraser, A. R.
1960
Radiation fronts. Proc. R. Soc. Lond. A
245, 536–545.
Garnier, J., Malinié, G., Saillard, Y. & Cherfils-Cléouin, C.
2006
Self-similar solutions for nonlinear radiation diffusion equation. Phys. Plasmas
13, 092703.
Gauthier, S., Le Creurer, B., Abéguilé, F., Boudesocque-Dubois, C. & Clarisse, J.-M.
2005
A self-adaptive domain decomposition method with Chebyshev method. Intl J. Pure Appl. Maths
24, 553–577.
Ghoniem, A. F., Kamel, M. M., Berger, S. A. & Oppenheim, A. K.
1982
Effects of internal heat transfer on the structure of self-similar blast waves. J. Fluid Mech.
117, 473–491.
Goncharov, V. N., Skupsky, S., Boehly, T. R., Knauer, J. P., Mckenty, P., Smalyuk, V. A., Town, R. P., Gotchev, O. V., Betti, R. & Meyerhofer, D. D.
2000
A model of laser imprinting. Phys. Plasmas
7 (5), 2062–2068.
Hammer, J. H. & Rosen, M. D.
2003
A consistent approach to solving the radiation diffusion equation. Phys. Plasmas
10, 1829–1845.
Ishizaki, R. & Nishihara, K.
1997
Propagation of a rippled shock wave driven by nonuniform laser ablation. Phys. Rev. Lett.
78 (10), 1920–1923.
Kovásznay, L. S. G.
1953
Turbulence in supersonic flow. J. Aero. Sci.
20 (10), 657–674.
Kull, H. J. & Anisimov, S. I.
1986
Ablative stabilization in the incompressible Rayleigh–Taylor instability. Phys. Fluids
29, 2067–2075.
Landau, L. D. & Lifshitz, E. M.
1987
Fluid Mechanics. Pergamon.
Langhaar, H. L.
1951
Dimensional Analysis and Theory of Models. Wiley.
Lindl, J., Landen, O., Edwards, J., Moses, E. & NIC Team
2014
Review of the National Ignition Campaign 2009-2012. Phys. Plasmas
21, 020501.
Lombard, V., Gauthier, S., Clarisse, J.-M. & Boudesocque-Dubois, C.
2008
Kovásznay modes in stability of self-similar ablation flows of ICF. Europhys. Lett.
84, 25001.
Marshak, R.
1958
Effect of radiation on shock wave behavior. Phys. Fluids
1 (1), 24–29.
Mihalas, D. & Mihalas, B. W.
1984
Foundations of Radiation Hydrodynamics. Oxford University Press.
Murakami, M., Sakaiya, T. & Sanz, J.
2007
Self-similar ablative flow of nonstationary accelerating foil due to nonlinear heat conduction. Phys. Plasmas
14, 022707.
NiCastro, J. R. A. J.
1970
Similarity analysis of the radiative gas dynamics equations with spherical symmetry. Phys. Fluids
13, 2000–2006.
Nishihara, K.
1982
Scaling laws of plasma ablation by thermal radiation. Japan. J. Appl. Phys.
21, L571–L573.
Nozaki, K. & Nishihara, K.
1980
Deflagration waves supported by thermal radiation. J. Phys. Soc. Japan
48 (3), 993–997.
Pakula, R. & Sigel, R.
1985
Self-similar expansion of dense matter due to heat transfer by nonlinear conduction. Phys. Fluids
28, 232–244.
Paolucci, S.1982 On the filtering of sound from the Navier–Stokes equations. Tech. Rep. SAND-82-8257. Sandia National Laboratories.
Piriz, A. R., Sanz, J. & Ibañez, L. F.
1997
Rayleigh–Taylor instability of steady ablation fronts: The discontinuity model revisited. Phys. Plasmas
4 (4), 1117–1126.
Reinicke, P. & Meyer-ter-Vehn, J.
1991
The point explosion with heat conduction. Phys. Fluids A
3, 1807–1818.
Saillard, Y.
2000
Hydrodynamique de l’implosion d’une cible FCI. C. R. Acad. Sci. Paris IV
t. 1, 705–718.
Saillard, Y., Arnault, P. & Silvert, V.
2010
Principles of the radiative ablation modeling. Phys. Plasmas
17, 123302.
Samarskiĭ, A. A., Kurdyumov, S. P. & Volosevich, P. P.
1965
Travelling waves in a medium with non-linear heat conduction. USSR Comput. Maths. Math. Phys.
5, 40–67.
Sanz, J., Piriz, A. R. & Tomasel, F. G.
1992
Self-similar model for tamped ablation driven by thermal radiation. Phys. Fluids B
4 (3), 683–692.
Sedov, L.
1959
Similarity and Dimensionality in Mechanics. Academic Press.
Shestakov, A. I.
1999
Time-dependent simulations of point explosions with heat conduction. Phys. Fluids
11, 1091–1095.
Shussman, T. & Heizler, S. I.
2015
Full self-similar solutions of the subsonic radiative heat equations. Phys. Plasmas
22, 082109.
Velikovich, A. L., Dahlburg, J. P., Gardner, J. H. & Taylor, R. J.
1998
Saturation of perturbation growth in ablatively driven planar laser targets. Phys. Plasmas
5, 1491–1505.
Wang, K. C.
1964
The ‘piston problem’ with thermal radiation. J. Fluid Mech.
20, 447–455.
Zel’dovich, Ya. B. & Raizer, Yu. P.
1967
Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Academic Press.