Article contents
Hydraulic adjustment to an obstacle in a rotating channel
Published online by Cambridge University Press: 10 February 2000
Abstract
In order to gain insight into the hydraulics of rotating-channel flow, a set of initial-value problems analogous to Long's towing experiments is considered. Specifically, we calculate the adjustment caused by the introduction of a stationary obstacle into a steady, single-layer flow in a rotating channel of infinite length. Using the semigeostrophic approximation and the assumption of uniform potential vorticity, we predict the critical obstacle height above which upstream influence occurs. This height is a function of the initial Froude number, the ratio of the channel width to an appropriately defined Rossby radius of deformation, and a third parameter governing how the initial volume flux in sidewall boundary layers is partitioned. (In all cases, the latter is held to a fixed value specifying zero flow in the right-hand (facing downstream) boundary layer.) The temporal development of the flow according to the full, two-dimensional shallow water equations is calculated numerically, revealing numerous interesting features such as upstream-propagating shocks and separated rarefying intrusions, downstream hydraulic jumps in both depth and stream width, flow separation, and two types of recirculations. The semigeostrophic prediction of the critical obstacle height proves accurate for relatively narrow channels and moderately accurate for wide channels. Significantly, we find that contact with the left-hand wall (facing downstream) is crucial to most of the interesting and important features. For example, no instances are found of hydraulic control of flow that is separated from the left-hand wall at the sill, despite the fact that such states have been predicted by previous semigeostrophic theories. The calculations result in a series of regime diagrams that should be very helpful for investigators who wish to gain insight into rotating, hydraulically driven flow.
- Type
- Research Article
- Information
- Copyright
- © 2000 Cambridge University Press
- 17
- Cited by