Skip to main content Accessibility help
×
Home

How non-Darcy effects influence scaling laws in Hele-Shaw convection experiments

  • Marco De Paoli (a1), Mobin Alipour (a1) (a2) and Alfredo Soldati (a1) (a2)

Abstract

We examine experimentally the influence of non-Darcy effects on convective dissolution in Hele-Shaw cells. We focus on buoyancy-driven convection, where the flow is controlled by the Rayleigh–Darcy number, $Ra$ , which measures the strength of convection compared to diffusion. The Hele-Shaw cell is suitable to mimic Darcy flows only under certain geometrical constraints, and a recent theoretical work (Letelier et al., J. Fluid Mech., vol. 864, 2019, pp. 746–767) demonstrated that a precise limit exists for the parameter $\unicode[STIX]{x1D716}^{2}Ra$ $\unicode[STIX]{x1D716}\sim$ thickness-to-height ratio – beyond which the flow exhibits non-Darcy effects. In this work, we run experiments for solute convection in Rayleigh–Bénard-like configuration. We examine a wide range of the parameters space $(Ra,\unicode[STIX]{x1D716})$ and we clearly identify the application limits of Darcy flow assumptions. Besides confirming previous theoretical predictions, current results are of relevance in the context of porous media flows – which are often studied experimentally with Hele-Shaw set-ups. Using our original datasets, we have been able to explain and reconcile the discrepancies observed between scaling laws previously proposed for Rayleigh–Bénard-like experiments and simulations in similar contexts. Specifically, we attribute an important role to the parameter $\unicode[STIX]{x1D716}^{2}Ra$ , which clearly establishes thresholds beyond which Hele-Shaw experiment results are influenced by three-dimensional effects.

Copyright

Corresponding author

Email address for correspondence: alfredo.soldati@tuwien.ac.at

References

Hide All
Alipour, M. & De Paoli, M. 2019 Convective dissolution in porous media: experimental investigation in Hele-Shaw cell. Proc. Appl. Maths Mech. 19 (1), e201900236.
Amooie, M. A., Soltanian, M. R. & Moortgat, J. 2018 Solutal convection in porous media: comparison between boundary conditions of constant concentration and constant flux. Phys. Rev. E 98, 033118.
Backhaus, S., Turitsyn, K. & Ecke, R. E. 2011 Convective instability and mass transport of diffusion layers in a Hele-Shaw geometry. Phys. Rev. Lett. 106 (10), 104501.
Bae, A. J., Beta, C. & Bodenschatz, E. 2009 Rapid switching of chemical signals in microfluidic devices. Lab on a Chip 9 (21), 30593065.
Ching, J., Chen, P. & Tsai, P. A. 2017 Convective mixing in homogeneous porous media flow. Phys. Rev. F 2, 014102.
De Paoli, M., Giurgiu, V., Zonta, F. & Soldati, A. 2019 Universal behavior of scalar dissipation rate in confined porous media. Phys. Rev. F 4, 101501.
De Paoli, M., Zonta, F. & Soldati, A. 2016 Influence of anisotropic permeability on convection in porous media: implications for geological CO2 sequestration. Phys. Fluids 28 (5), 056601.
De Paoli, M., Zonta, F. & Soldati, A. 2017 Dissolution in anisotropic porous media: modelling convection regimes from onset to shutdown. Phys. Fluids 29 (2), 026601.
Emami-Meybodi, H., Hassanzadeh, H., Green, C. P. & Ennis-King, J. 2015 Convective dissolution of CO2 in saline aquifers: progress in modeling and experiments. Intl J. Greenh. Gas Control 40, 238266.
Feltham, D. L., Untersteiner, N., Wettlaufer, J. S. & Worster, M. G. 2006 Sea ice is a mushy layer. Geophys. Res. Lett. 33 (14), L14501.
Hewitt, D. R., Neufeld, J. A. & Lister, J. R. 2013 Convective shutdown in a porous medium at high Rayleigh number. J. Fluid Mech. 719, 551586.
Hidalgo, J. J., Fe, J., Cueto-Felgueroso, L. & Juanes, R. 2012 Scaling of convective mixing in porous media. Phys. Rev. Lett. 109 (26), 264503.
Huppert, H. E. & Neufeld, J. A. 2014 The fluid mechanics of carbon dioxide sequestration. Annu. Rev. Fluid Mech. 46, 255272.
Jafari-Raad, S. M. & Hassanzadeh, H. 2015 Onset of dissolution-driven instabilities in fluids with nonmonotonic density profile. Phys. Rev. E 92, 053023.
Kirby, B. J. 2010 Micro-and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices. Cambridge University Press.
LeBlanc, D. R. 1984 Sewage Plume in a Sand and Gravel Aquifer, Cape Cod, Massachusetts. US Geological Survey.
Letelier, J. A., Mujica, N. & Ortega, J. H. 2019 Perturbative corrections for the scaling of heat transport in a Hele-Shaw geometry and its application to geological vertical fractures. J. Fluid Mech. 864, 746767.
Liang, Y., Wen, B., Hesse, M. A. & DiCarlo, D. 2018 Effect of dispersion on solutal convection in porous media. Geophys. Res. Lett. 45 (18), 96909698.
Neufeld, J. A., Hesse, M. A., Riaz, A., Hallworth, M. A., Tchelepi, H. A. & Huppert, H. E. 2010 Convective dissolution of carbon dioxide in saline aquifers. Geophys. Res. Lett. 37, 26.
Nield, D. A. & Bejan, A. 2013 Convection in Porous Media. Springer.
Novotný, P. & Söhnel, O. 1988 Densities of binary aqueous solutions of 306 inorganic substances. J. Chem. Engng Data 33 (1), 4955.
Pau, G. S. H., Bell, J. B., Pruess, K., Almgren, A. S., Lijewski, M. J. & Zhang, K. 2010 High-resolution simulation and characterization of density-driven flow in CO2 storage in saline aquifers. Adv. Water Resour. 33 (4), 443455.
Saffman, P. G. & Taylor, G. I. 1958 The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid. Proc. R. Soc. Lond. A 245, 312329.
Simmons, C. T., Fenstemaker, T. R. & Sharp, J. M. Jr 2001 Variable-density groundwater flow and solute transport in heterogeneous porous media: approaches, resolutions and future challenges. J. Contam. Hydrol. 52 (1–4), 245275.
Slim, A. C. 2014 Solutal-convection regimes in a two-dimensional porous medium. J. Fluid Mech. 741, 461491.
Slim, A. C., Bandi, M. M., Miller, J. C. & Mahadevan, L. 2013 Dissolution-driven convection in a Hele-Shaw cell. Phys. Fluids 25 (2), 024101.
Taylor, G. I. 1953 Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. R. Soc. Lond. A 219 (1137), 186203.
Tsai, P. A., Riesing, K. & Stone, H. A. 2013 Density-driven convection enhanced by an inclined boundary: implications for geological CO2 storage. Phys. Rev. E 87 (1), 011003.
Van Der Molen, W. H. & Ommen, H. C. V. 1988 Transport of solutes in soils and aquifers. J. Hydrol. 100 (1), 433451.
Wen, B., Akhbari, D., Zhang, L. & Hesse, M. A. 2018a Convective carbon dioxide dissolution in a closed porous medium at low pressure. J. Fluid Mech. 854, 5687.
Wen, B., Chang, K. W. & Hesse, M. A. 2018b Rayleigh–Darcy convection with hydrodynamic dispersion. Phys. Rev. F 3, 123801.
Wettlaufer, J. S., Worster, M. G. & Huppert, H. E. 1997 The phase evolution of Young Sea Ice. Geophys. Res. Lett. 24 (10), 12511254.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

How non-Darcy effects influence scaling laws in Hele-Shaw convection experiments

  • Marco De Paoli (a1), Mobin Alipour (a1) (a2) and Alfredo Soldati (a1) (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.