Skip to main content Accessibility help
×
×
Home

How flexibility affects the wake symmetry properties of a self-propelled plunging foil

  • Xiaojue Zhu (a1), Guowei He (a1) and Xing Zhang (a1)

Abstract

The wake symmetry properties of a flapping-foil system are closely associated with its propulsive performance. In the present work, the effect of the foil flexibility on the wake symmetry properties of a self-propelled plunging foil is studied numerically. We compare the wakes of a flexible foil and a rigid foil at a low flapping Reynolds number of 200. The two foils are of the same dimensions, flapping frequency, leading-edge amplitude and cruising velocity but different bending rigidities. The results indicate that flexibility can either inhibit or trigger the symmetry breaking of the wake. We find that there exists a threshold value of vortex circulation above which symmetry breaking occurs. The modification of vortex circulation is found to be the pivotal factor in the influence of the foil flexibility on the wake symmetry properties. An increase in flexibility can result in a reduction in the vorticity production at the leading edge because of the decrease in the effective angle of attack, but it also enhances vorticity production at the trailing edge because of the increase in the trailing-edge flapping velocity. The competition between these two opposing effects eventually determines the strength of vortex circulation, which, in turn, governs the wake symmetry properties. Further investigation indicates that the former effect is related to the streamlined shape of the deformed foil while the latter effect is associated with structural resonance. The results of this work provide new insights into the functional role of passive flexibility in flapping-based biolocomotion.

Copyright

Corresponding author

Email address for correspondence: zhangx@lnm.imech.ac.cn

References

Hide All
Alben, S., Witt, C., Baker, T. V., Anderson, E. & Lauder, G. V. 2012 Locomotion of a passively flapping flat plate. Phys. Fluids 24, 051901.
Anderson, J. M., Streitlien, K., Barret, D. S. & Triantafyllou, M. S. 1998 Oscillating foils for high propulsive efficiency. J. Fluid Mech. 360, 4672.
Borazjani, I. & Sotiropoulos, F. 2008 Numerical investigation of the hydrodynamics of carangiform swimming in the transitional and inertial flow regimes. J. Expl Biol. 211, 15411558.
Cleaver, D. J., Wang, Z. & Gursul, I. 2012 Bifurcating flows of plunging aerofoils at high Strouhal numbers. J. Fluid Mech. 708, 349376.
Combes, S. A. & Daniel, J. 2003 Flexural stiffness in insect wings II. Spatial distribution and dynamic wing bending. J. Expl Biol. 206, 29892997.
Eldredge, J. D., Toomey, J. & Medina, A. 2010 On the roles of chord-wise flexibility in a flapping wing with hovering kinematics. J. Fluid Mech. 659, 94115.
Godoy-Diana, R., Aider, J. L. & Wesfreid, J. E. 2008 Transition in the wake of a flapping foil. Phys. Rev. E 77, 016308.
Godoy-Diana, R., Marais, C., Aider, J. L. & Wesfreid, J. E. 2009 A model for the symmetry breaking of the reverse Benard–von Karman vortex street produced by a flapping foil. J. Fluid Mech. 622, 2332.
Heathcote, S. & Gursul, I. 2007a Flexible flapping airfoil propulsion at low Reynolds numbers. AIAA J. 45, 10661079.
Heathcote, S. & Gursul, I. 2007b Jet switching phenomenon for a periodically plunging airfoil. Phys. Fluids 19, 027104.
Huang, W. X., Shin, S. J. & Sung, H. J. 2007 Simulation of flexible filaments in a uniform flow by the immersed boundary method. J. Comput. Phys. 226, 22062228.
Jones, K. D., Dohring, C. M. & Platzer, M. F. 1998 Experimental and computational investigation of the Knoller–Betz effect. AIAA J. 36, 12401246.
Kang, C. K., Aono, H., Cesnik, C. E. S. & Shyly, W. 2011 Effects of flexibility on the aerodynamic performance of flapping wings. J. Fluid Mech. 689, 3274.
Katz, J. & Weihs, D. 1978 Hydrodynamic propulsion by large amplitude oscillation of an airfoil with chordwise flexibility. J. Fluid Mech. 88, 713723.
Kern, S. & Koumoutsakos, P. 2006 Simulations of optimized anguilliform swimming. J. Expl Biol. 209, 48414857.
Lauder, G. V., Anderson, E. J., Tangorra, J. & Madden, P. G. 2007 Fish biorobotics: kinematics and hydrodynamics of self-propulsion. J. Expl Biol. 210, 27672780.
Lee, J. & Lee, S. 2013 Fluid–structure interaction for the propulsive velocity of a flapping flexible plate at low Reynolds number. Comput. Fluids 71, 348374.
Liang, C. L., Ou, K., Premasuthan, S., Jameson, A. & Wang, Z. J. 2011 High-order accurate simulations of unsteady flow past plunging and pitching airfoils. Comput. Fluids 40, 236248.
Marais, C., Thiria, B., Wesfreid, J. E. & Godoy-Diana, R. 2012 Stabilizing effect of flexibility in the wake of a flapping foil. J. Fluid Mech. 710, 659669.
Masoud, H. & Alexeev, A. 2010 Resonance of flexible flapping wings at low Reynolds number. Phys. Rev. E 81, 056304.
Michelin, S. & Smith, S. G. L. 2009 Resonance and propulsion performance of a heaving flexible wing. Phys. Fluids 21, 071902.
Prempraneech, P., Hover, F. S. & Triantafyllou, M. S. 2003 The effect of chordwise flexibility on the thrust and efficiency of a flapping foil. In Proceedings of 13th International Symposium on Unmanned Untethered Submersible Technology, UUST, Durham, NH, USA.
Ramananarivo, S., Godoy-Diana, R. & Thiria, B. 2011 Rather than resonance, flapping wing flyers may play on aerodynamics to improve performance. Proc. Natl Acad. Sci. USA 108, 59645969.
Schnipper, T., Andersen, A. & Bohr, T. 2009 Vortex wakes of a flapping foil. J. Fluid Mech. 633, 411423.
Schultz, W. W. & Webb, P. W. 2002 Power requirements of swimming: do new methods resolve old questions? Integr. Compar. Biol. 42, 10181025.
Shoele, K. & Zhu, Q. 2012 Leading edge strengthening and the propulsion performance of flexible ray fins. J. Fluid Mech. 693, 402432.
Shyy, W., Aono, H., Chimakurthi, S. K., Trizila, P., Kang, C. K., Cesnik, C. E. S. & Liu, H. 2010 Recent progress in flapping wing aerodynamics and aeroelasticity. Prog. Aerosp. Sci. 46, 284327.
Spagnolie, S. E., Moret, L., Shelley, M. J. & Zhang, J. 2010 Surprising behaviours in flapping locomotion with passive pitching. Phys. Fluids 22, 041903.
Thiria, B. & Godoy-Diana, R. 2010 How wing compliance drives the efficiency of self-propelled flapping flyers. Phys. Rev. E 82, 015303(R).
Vanella, M., Fitzgerald, T., Preidikman, S., Balaras, E. & Balachandran, B. 2009 Influence of flexibility on the aerodynamic performance of a hovering wing. J. Expl Biol. 212, 95105.
Wang, S. Z. & Zhang, X. 2011 An immersed boundary method based on discrete stream function formulation for two- and three-dimensional incompressible flows. J. Comput. Phys. 230, 34793499.
Zhang, J., Liu, N. S. & Lu, X. Y. 2010 Locomotion of a passively flapping flat plate. J. Fluid Mech. 659, 4368.
Zheng, Z. C. & Wei, Z. 2012 Study of mechanisms and factors that influence the formation of vortical wake of a heaving airfoil. Phys. Fluids 24, 103601.
Zhu, X. J., He, G. W. & Zhang, X. 2014 An improved direct-forcing immersed boundary method for fluid–structure interaction simulations. Trans. ASME J. Fluids Engng 136, 040903.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed