Skip to main content Accessibility help
×
Home

High-Reynolds-number asymptotics of the steady flow through a row of bluff bodies

  • S. I. Chernyshenko (a1) and Ian P. Castro (a2)

Abstract

An extension of an earlier theory of the two-dimensional incompressible flow past an isolated body is described. For a crossflow cascade of bodies, each of unit size in the crossflow direction and distance 2H apart, the region of validity of the extended theory covers H [Gt ] 1. A comparison with recent numerical calculations is favourable and a tentative asymptotic structure for the case of H = O(1) is described.

Copyright

References

Hide All
Acrivos, A., Leal, L. G., Snowden, D. D. & Pan, F. 1968 Further experiments on steady separated flow past bluff objects. J. Fluid Mech. 34, 25.
Acrivos, A., Snowden, D. D., Grove, A. S. & Petersen, E. E. 1965 The steady separated flow past a circular cylinder at large Reynolds numbers. J. Fluid Mech. 21, 737760.
Batchelor, G. K. 1956 A proposal concerning laminar wakes behind bluff bodies at large Reynolds number. J. Fluid Mech. 1, 338398.
Bukovshin, V. G. & Taganov, G. I. 1976 Numerical results of the asymptotic theory of the flow past a body with stationary separation eddy at large Reynolds number. Chislennye metody mechaniki sploshnoi sredy. Novosibirsk: VC SO AN SSSR 7, 1326 (in Russian.)
Chernyshenko, S. I. 1982 An approximate method of determining the vorticity in the separation region as the viscosity tends to zero. Fluid Dyn. 17 (1), 711. (Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza 1, 10–15.)
Chernyshenko, S. I. 1984 Calculation of low-viscosity flows with separation by means of Batchelor's model. Fluid Dyn. 19 (2), 206210. (Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza 2, 40–45.)
Chernyshenko, S. I. 1988 The asymptotic form of the stationary separated circumfluence of a body at high Reynolds number. Appl. Math. Mech. 52, 746. (Prikl. Matem. Mekh. 52 (6), 958–966.)
Chernyshenko, S. I. 1991 Separated flow over a backward-facing step whose height is much greater than the thickness of the lower sublayer of the interaction zone. Fluid Dyn. 26 (4), 496501. (Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza 4, 25–30.)
Chernyshenko, S. I. 1993 Stratified Sadovskii flow in a channel. J. Fluid Mech. 250. 423431.
Fornberg, B. 1985 Steady viscous flow past a circular cylinder up to Reynolds number 600. J. Comput. Phys. 61, 297320.
Fornberg, B. 1991 Steady incompressible flow past a row of circular cylinders. J. Fluid Mech. 225, 655671.
Fornberg, B. 1993 Computing steady incompressible flows past blunt bodies — a historical overview. In Numerical Methods for Fluid Dynamics IV (ed. M. J. Baines & K. W. Morton), pp. 115134, Oxford University Press.
Herwig, H. 1982 Die Anwendung der asymptotischen Theorie auf laminare Stromungen mit endlichen Ablosegebieter. Z.Flugwiss. Weltraumforsh. B 46, (4), 266279 (in German.)
Ingham, D. B., Tang, T. & Morton, B. R. 1990 Steady two-dimensional flow through a row of normal flat plates. J. Fluid Mech. 210, 281302.
Kolosov, B. V. & Shifrin, E. G. 1975 On a particular boundary value problem arising in the investigation of closed stationary separation zones in an incompressible fluid. Appl. Math. Mech. 39, (5), 802811. (Prikl. Mat. Mech. 39 (5), 773–779.)
Lukerchenko, N. N. 1990 A comparison of two structures for impinging jets with different Bernoulli's constants. Zh. Prikl. Mech. i Techn. Phys. No. 6, 97101 (In Russian).
Milos, F. S. & Acrivos, A. 1986 Steady flow past sudden expansions at large Reynolds numbers. Part I. Boundary layer solutions. Phys. Fluids 29, 13531359.
Milos, F. S., Acrivos, A. & Kim, J. 1987 Steady flow past sudden expansions at large Reynolds numbers. Part II. Navier–Stokes solutions for the cascade expansion. Phys. Fluids 30, 718.
Moore, D. W., Saffman, P. G. & Tanveer, S. 1988 The calculation of some Batchelor flows: The Sadovskii vortex and rotational corner flow. Phys. Fluids 31, 978.
Natarajan, R., Fornberg, B. & Acrivos, A. 1992 Flow past a row of flat plates at large Reynolds number. Proc. R. Soc. Lond. A 441, 211235.
Peregrine, D. H. 1985 A note on the steady high-Reynolds-number flow about a circular cylinder. J. Fluid Mech. 157, 493500.
Sadovskii, V. S. 1970 The region of constant vorticity in plain potential flow. Uch. Zap. TsAGI 1 (4), 19 (in Russian).
Sadovskii, V. S. 1971a Vortex regions in a potential stream with a jump in Bernoulli's constant across the boundary. Appl Math. Mech. 35, 729. (Prikl. Matem. Mekh. 35 (5), 773–779.)
Sadovskii, V. S. 1971b Some properties of vortex and potential flows touching along a closed fluid streamline. Uch. Zap. TsAGI 2 (1), 113116 (in Russian.)
Sadovskii, V. S. 1973 A study of the solutions to Euler's equations containing regions of constant vorticity. Trudy TsAGI. 1474, 114 (in Russian.)
Sadovskii, V. S. & Kozhuro, L. A. 1977 On two one-parameter families of vortex flows of inviscid fluid. Chislennye metody mechaniki sploshnoi sredy, Novosibirsk. 8 (7). 126140 (in Russian.)
Saffman, P. G. & Tanveer, S. 1982 The touching pair of equal and opposite uniform vortices. Phys. Fluids 25, 1929.
Serrin, J. 1959 Mathematical Principles of Classical Fluid Mechanics.
Smith, F. T. 1979 Laminar flow of an incompressible fluid past a bluff body: the separation, reattachment, eddy properties and drag. J. Fluid Mech. 92, 171205.
Smith, F. T. 1985a On large-scale eddy closure. J. Math. Phys. Sci. 19, 180.
Smith, F. T. 1985b A structure for laminar flow past a bluff body at high Reynolds number. J. Fluid Mech. 155, 175191.
Smith, F. T. 1988 A reversed flow singularity in interacting boundary layers. Proc. R. Soc. Lond. A 420, 2152.
Sychev, V. V. 1967 Rep. to 8th Symp. Recent Problems in Mech. Liquids & Gases, Tarda, Poland.
Taganov, G. I. 1968 Contribution to the theory of stationary separation zones. Fluid Dyn. 3, (5), 111 (Izv. AN SSSR. Mekhanika Zhidkosti i Gaza 3 (5), 3–19.)
Taganov, G. I. 1970 On limiting flows of viscous fluid with stationary separation for Re → ∞. Uch. Zap. TsAGI. 1 (3), 114 (in Russian.)
Tihonov, A. N. & Samarskii, A. A. 1972 Equations of Mathematical Physics. Moscow; Nauka (in Russian.)
Turfus, C. 1993 Prandtl-Batchelor flow past a flat plat at normal incidence in a channel – inviscid analysis. J. Fluid Mech. 249, 5972.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed