Skip to main content Accessibility help
×
Home

The high-Reynolds-number asymptotic development of nonlinear equilibrium states in plane Couette flow

  • Kengo Deguchi (a1) and Philip Hall (a1)

Abstract

The relationship between nonlinear equilibrium solutions of the full Navier–Stokes equations and the high-Reynolds-number asymptotic vortex–wave interaction (VWI) theory developed for general shear flows by Hall & Smith (J. Fluid Mech., vol. 227, 1991, pp. 641–666) is investigated. Using plane Couette flow as a prototype shear flow, we show that all solutions having $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}O(1)$ wavenumbers converge to VWI states with increasing Reynolds number. The converged results here uncover an upper branch of VWI solutions missing from the calculations of Hall & Sherwin (J. Fluid Mech., vol. 661, 2010, pp. 178–205). For small values of the streamwise wavenumber, the converged lower-branch solutions take on the long-wavelength state of Deguchi, Hall & Walton (J. Fluid Mech., vol. 721, 2013, pp. 58–85) while the upper-branch solutions are found to be quite distinct, with new states associated with instabilities of jet-like structures playing the dominant role. Between these long-wavelength states, a complex ‘snaking’ behaviour of solution branches is observed. The snaking behaviour leads to complex ‘entangled’ states involving the long-wavelength states and the VWI states. The entangled states exhibit different-scale fluid motions typical of those found in shear flows.

Copyright

Corresponding author

Email address for correspondence: philhall@ic.ac.uk

References

Hide All
Avila, M., Mellibovsky, F., Roland, N. & Hof, B. 2013 Streamwise-localized solutions at the onset of turbulence in pipe flow. Phys. Rev. Lett. 110, 224502.
Blackburn, H. M., Hall, P. & Sherwin, S. J. 2013 Lower branch equilibria in Couette flow: the emergence of canonical states for arbitrary shear flows. J. Fluid Mech. 721, 5885.
Deguchi, K., Hall, P. & Walton, A. G. 2013 The emergence of localized vortex–wave interaction states in plane Couette flow. J. Fluid Mech. 721, 5885.
Duguet, Y., Schlatter, P. & Henningson, D. S. 2009 Localized edge states in plane Couette flow. Phys. Fluids 21, 111701.
Gibson, J. F., Halcrow, J. & Cvitanovic, P. 2009 Equilibrium and travelling-wave solutions of plane Couette flow. J. Fluid Mech. 638, 243266.
Hall, P. & Sherwin, S. 2010 Streamwise vortices in shear flows: harbingers of transition and the skeleton of coherent structures. J. Fluid Mech. 661, 178205.
Hall, P. & Smith, F. T. 1989 Nonlinear Tollmien–Schlichting/vortex interaction in boundary layers. Eur. J. Mech. (B/Fluids) 8 (3), 179205.
Hall, P. & Smith, F. T. 1990 Near-planar TS waves and longitudinal vortices in channel flow: nonlinear interaction and focussing. In Instability and Transition, pp. 539. Springer.
Hall, P. & Smith, F. T. 1991 On strongly nonlinear vortex/wave interactions in boundary-layer transition. J. Fluid Mech. 227, 641666.
Isoni, A.2014 Vortex wave interaction theory to understand self-sustaining processes in transitional flows. PhD thesis, Department of Aeronautics, Imperial College London, UK.
Itano, T. & Toh, S. 2001 The dynamics of bursting process in wall turbulence. J. Phys. Soc. Japan 70, 703716.
Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 6994.
Kreilos, T. & Eckhardt, B. 2012 Periodic orbits near onset of chaos in plane Couette flow. Chaos 22, 047505.
Nagata, M. 1990 Three-dimensional finite-amplitude solutions in plane Couette flow: bifurcation from infinity. J. Fluid Mech. 217, 519527.
Schneider, T. M., Gibson, J. F. & Burke, J. 2010 Snakes and ladders: localized solutions of plane Couette flow. Phys. Rev. Lett. 104, 104501.
Skufca, J. D., Yorke, J. A. & Eckhardt, B. 2006 Edge of chaos in a parallel shear flow. Phys. Rev. Lett. 96, 174101.
Waleffe, F. 1997 On a self-sustaining process in shear flows. Phys. Fluids 9, 883900.
Waleffe, F. 2003 Homotopy of exact coherent structures in plane shear flows. Phys. Fluids 15, 15171534.
Wang, J., Gibson, J. & Waleffe, F. 2007 Lower branch coherent states in shear flows: transition and control. Phys. Rev. Lett. 98, 204501.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

The high-Reynolds-number asymptotic development of nonlinear equilibrium states in plane Couette flow

  • Kengo Deguchi (a1) and Philip Hall (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed