Skip to main content Accessibility help
×
Home

Heat transport and the large-scale circulation in rotating turbulent Rayleigh–Bénard convection

  • JIN-QIANG ZHONG (a1) and GUENTER AHLERS (a1)

Abstract

Measurements of the Nusselt number Nu and of properties of the large-scale circulation (LSC) for turbulent Rayleigh–Bénard convection are presented in the presence of rotation about a vertical axis at angular speeds 0 ≤ Ω ≲ 2 rad s−1. The sample chamber was cylindrical with a height equal to the diameter, and the fluid contained in it was water. The LSC was studied by measuring sidewall temperatures as a function of azimuthal position. The measurements covered the Rayleigh-number range 3 × 108Ra ≲ 2 × 1010, the Prandtl-number range 3.0 ≲ Pr ≲ 6.4 and the Rossby-number range 0 ≤ (1/Ro ∝ Ω) ≲ 20. At modest 1/Ro, we found an enhancement of Nu due to Ekman-vortex pumping by as much as 20%. As 1/Ro increased from zero, this enhancement set in discontinuously at and grew above 1/Roc. The value of 1/Roc varied from about 0.48 at Pr = 3 to about 0.35 at Pr = 6.2. At sufficiently large 1/Ro (large rotation rates), Nu decreased again, due to the Taylor–Proudman (TP) effect, and reached values well below its value without rotation. The maximum enhancement increased with increasing Pr and decreasing Ra and, we believe, was determined by a competition between the Ekman enhancement and the TP depression. The temperature signature along the sidewall of the LSC was detectable by our method up to 1/Ro ≃ 1. The frequency of cessations α of the LSC grew dramatically with increasing 1/Ro, from about 10−5 s−1 at 1/Ro = 0 to about 2 × 10−4 s−1 at 1/Ro = 0.25. A discontinuous further increase of α, by about a factor of 2.5, occurred at 1/Roc. With increasing 1/Ro, the time-averaged and azimuthally averaged vertical thermal gradient along the sidewall first decreased and then increased again, with a minimum somewhat below 1/Roc. The Reynolds number of the LSC, determined from oscillations of the time correlation functions of the sidewall temperatures, was constant within our resolution for 1/Ro ≲ 0.3 and then decreased with increasing 1/Ro. The retrograde rotation rate of the LSC circulation plane exhibited complex behaviour as a function of 1/Ro even at small rotation rates corresponding to 1/Ro < 1/Roc.

Copyright

Corresponding author

Email address for correspondence: guenter@physics.ucsb.edu

References

Hide All
Ahlers, G. 2009 Turbulent convection. Physics 2, 74.
Ahlers, G., Brown, E., Fontenele Araujo, F., Funfschilling, D., Grossmann, S. & Lohse, D. 2006 a Non-Oberbeck–Boussinesq effects in strongly turbulent Rayleigh–Bénard convection. J. Fluid Mech. 569, 409445.
Ahlers, G., Brown, E. & Nikolaenko, A. 2006 b The search for slow transients, and the effect of imperfect vertical alignment, in turbulent Rayleigh–Bénard convection. J. Fluid Mech. 557, 347367.
Ahlers, G., Grossmann, S. & Lohse, D. 2002 Hochpräzision im Kochtopf: neues zur turbulenten Konvektion. Phys. J. 1 (2), 3137.
Ahlers, G., Grossmann, S. & Lohse, D. 2009 Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81, 503538.
Ahlers, G. & Xu, X. 2001 Prandtl-number dependence of heat transport in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 86, 33203323.
Bajaj, K., Ahlers, G. & Pesch, W. 2002 Rayleigh–Bénard convection with rotation at small Prandtl numbers. Phys. Rev. E 65, 056309.
Bajaj, K. M. S., Liu, J., Naberhuis, B. & Ahlers, G. 1998 Square patterns in Rayleigh–Bénard convection with rotation about a vertical axis. Phys. Rev. Lett. 81, 806809.
Becker, N. & Ahlers, G. 2006 a The domain chaos puzzle and the calculation of the structure factor and its half-width. Phys. Rev. E 73, 046209.
Becker, N. & Ahlers, G. 2006 b Local wave director analysis of domain chaos in Rayleigh–Bénard convection. J. Stat. Mech. P12002, 139.
Becker, N., Scheel, J., Cross, M. & Ahlers, G. 2006 Effect of the centrifugal force on domain chaos in Rayleigh–Bénard convection. Phys. Rev. E 73, 066309.
Bodenschatz, E., Cannell, D. S., de Bruyn, J., Ecke, R., Hu, Y., Lerman, K. & Ahlers, G. 1992 Experiments on three systems with non-variational aspects. Physica D 61, 7793.
Boubnov, B. M. & Golitsyn, G. S. 1986 Experimental study of convective structures in rotating fluids. J. Fluid Mech. 167, 503531.
Boubnov, B. M. & Golitsyn, G. S. 1990 Temperature and velocity field regimes of convective motions in a rotating plane fluid layer. J. Fluid Mech. 219, 215239.
Brown, E. & Ahlers, G. 2006 a Effect of the Earth's Coriolis force on turbulent Rayleigh–Bénard convection in the laboratory. Phys. Fluids 18, 125108.
Brown, E. & Ahlers, G. 2006 b Rotations and cessations of the large-scale circulation in turbulent Rayleigh–Bénard convection. J. Fluid Mech. 568, 351386.
Brown, E. & Ahlers, G. 2007 a Large-scale circulation model of turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 98, 134501.
Brown, E. & Ahlers, G. 2007 b Temperature gradients and search for non-Boussinesq effects in the interior of turbulent Rayleigh–Bénard convection. Europhys. Lett. 80, 14001.
Brown, E. & Ahlers, G. 2008 a Azimuthal asymmetries of the large-scale circulation in turbulent Rayleigh–Bénard convection. Phys. Fluids 20, 105105.
Brown, E. & Ahlers, G. 2008 b A model of diffusion in a potential well for the dynamics of the large-scale circulation in turbulent Rayleigh–Bénard convection. Phys. Fluids 20, 075101.
Brown, E. & Ahlers, G. 2009 The origin of oscillations of the large-scale circulation of turbulent Rayleigh–Bénard convection. J. Fluid Mech. 638, 383400.
Brown, E., Funfschilling, D. & Ahlers, G. 2007 Anomalous Reynolds-number scaling in turbulent Rayleigh–Bénard convection. J. Stat. Mech. 2007, P10005.
Brown, E., Nikolaenko, A. & Ahlers, G. 2005 a Reorientation of the large-scale circulation in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 95, 084503.
Brown, E., Nikolaenko, A., Funfschilling, D. & Ahlers, G. 2005 b Heat transport by turbulent Rayleigh–Bénard convection: effect of finite top- and bottom-plate conductivity. Phys. Fluids 17, 075108.
Buell, J. C. & Catton, I. 1983 Effect of rotation on the stability of a bounded cylindrical layer of fluid heated from below. Phys. Fluids 26, 892896.
Busse, F. H. 1994 Convection driven zonal flows and vortices in the major planets. Chaos 4, 123134.
Busse, F. H. & Heikes, K. E. 1980 Convection in a rotating layer: a simple case of turbulence. Science 208, 173175.
Chandrasekhar, S. 1981 Hydrodynamic and Hydromagnetic Stability. Dover.
Choi, W., Prasad, D., Camassa, R. & Ecke, R. 2004 Traveling waves in rotating Rayleigh–Bénard convection. Phys. Rev. E 69, 056301.
Ciliberto, S., Cioni, S. & Laroche, C. 1996 Large-scale flow properties of turbulent thermal convection. Phys. Rev. E 54, R5901R5904.
Cioni, S., Ciliberto, S. & Sommeria, J. 1997 Strongly turbulent Rayleigh–Bénard convection in mercury: comparison with results at moderate Prandtl number. J. Fluid Mech. 335, 111140.
Clever, R. M. & Busse, F. H. 1979 Nonlinear properties of convection rolls in a horizontal layer rotating about a vertical axis. J. Fluid Mech. 94, 609627.
Ecke, R. E., Zhong, F. & Knobloch, E. 1992 Hopf bifurcation with broken reflection symmetry in rotating Rayleigh–Bénard convection. Europhys. Lett. 19, 177182.
Fantz, M., Friedrich, R., Bestehorn, M. & Haken, H. 1992 Pattern formation in rotating Bénard convection. Physica D 61, 147154.
Fernando, H. J. S., Chen, R. & Boyer, D. L. 1991 Effects of rotation on convective turbulence. J. Fluid Mech. 228, 513547.
Funfschilling, D. & Ahlers, G. 2004 Plume motion and large scale circulation in a cylindrical Rayleigh–Bénard cell. Phys. Rev. Lett. 92, 194502.
Funfschilling, D., Brown, E. & Ahlers, G. 2008 Torsional oscillations of the large-scale circulation in turbulent Rayleigh–Bénard convection. J. Fluid Mech. 607, 119139.
Funfschilling, D., Brown, E., Nikolaenko, A. & Ahlers, G. 2005 Heat transport by turbulent Rayleigh–Bénard convection in cylindrical cells with aspect ratio one and larger. J. Fluid Mech. 536, 145154.
Gascard, J., Watson, A., Messias, M., Olsson, K., Johannessen, T. & Simonsen, K. 2002 Long-lived vortices as a mode of deep ventilation in the Greenland Sea. Nature (London) 416, 525527.
Glatzmaier, G., Coe, R., Hongre, L. & Roberts, P. 1999 The role of the Earth's mantle in controlling the frequency of geomagnetic reversals. Nature (London) 401, 885890.
Grossmann, S. & Lohse, D. 2000 Scaling in thermal convection: a unifying view. J. Fluid. Mech. 407, 2756.
Grossmann, S. & Lohse, D. 2001 Thermal convection for large Prandtl number. Phys. Rev. Lett. 86, 33163319.
Hart, J. E. 1995 Nonlinear Ekman suction and agesotrophic effects in rapidly rotating flows. Geophys. Astrophys. Fluid Dyn. 79, 201222.
Hart, J. E. 2000 A note on nonlinear corrections to the Ekman layer pumping velocity. Phys. Fluids 12, 131135.
Hart, J. E., Kittelman, S. & Ohlsen, D. R. 2002 Mean flow precession and temperature probability density functions in turbulent rotating convection. Phys. Fluids 14, 955962.
Hart, J. E. & Olsen, D. R. 1999 On the thermal offset in turbulent rotating convection. Phys. Fluids 11, 21012107.
Heikes, K. E. & Busse, F. H. 1980 Weakly nonlinear turbulence in a rotating convection layer. Ann. N.Y. Acad. Sci. 357, 2836.
Heslot, F., Castaing, B. & Libchaber, A. 1987 Transition to turbulence in helium gas. Phys. Rev. A 36, 58705873.
Hu, Y., Ecke, R. & Ahlers, G. 1995 Time and length scales in rotating Rayleigh–Bénard convection. Phys. Rev. Lett. 74, 50405043.
Hu, Y., Ecke, R. E. & Ahlers, G. 1997 Convection under rotation for Prandtl numbers near one: linear stability, wavenumber selection, and pattern dynamics. Phys. Rev. E 55, 69286949.
Hu, Y., Pesch, W., Ahlers, G. & Ecke, R. E. 1998 Convection under rotation for Prandtl numbers near one: Küppers–Lortz instability. Phys. Rev. E 58, 58215833.
Jones, C. 2000 Convection-driven geodynamo models. Phil. Trans. R. Soc. Lond. A 358, 873897.
Julien, K., Legg, S., McWilliams, J. & Werne, J. 1996 a Hard turbulence in rotating Rayleigh–Bénard convection. Phys. Rev. E 53, R5557R5560.
Julien, K., Legg, S., McWilliams, J. & Werne, J. 1996 b Rapidly rotating turbulent Rayleigh–Bénard convection. J. Fluid Mech. 322, 243273.
Julien, K., Legg, S., McWilliams, J. & Werne, J. 1999 Plumes in rotating convection. Part 1. Ensemble statistics and dynamical balances. J. Fluid Mech. 391, 151187.
Kadanoff, L. P. 2001 Turbulent heat flow: structures and scaling. Phys. Today 54 (8), 3439.
King, E., Stellmach, S., Noir, J., Hansen, U. & Aurnou, J. 2009 Boundary layer control of rotating convection systems. Nature 457, 301304.
Kunnen, R. P. J., Clercx, H. J. H. & Geurts, B. J. 2006 Heat flux intensification by vortical flow localization in rotating convection. Phys. Rev. E 74, 056306.
Kunnen, R., Clercx, H. & Geurts, B. 2008 a Enhanced vertical inhomogeneity in turbulent rotating convection. Phys. Rev. Lett. 101, 174501.
Kunnen, R. P. J., Clercx, H. J. H. & Geurts, B. J. 2008 b Breakdown of large-scale circulation in turbulent rotating convection. Europhys. Lett. 84, 24001.
Kunnen, R., Geurts, B. & Clercx, H. 2010 Experimental and numerical investigation of turbulent convection in a rotating cylinder. J. Fluid Mech. 642, 445476.
Küppers, G. 1970 The stability of steady finite amplitude convection in a rotating fluid layer. Phys. Lett. 32A, 78.
Küppers, G. & Lortz, D. 1969 Transition from laminar convection to thermal turbulence in a rotating fluid layer. J. Fluid Mech. 35, 609620.
Liu, Y. & Ecke, R. 1997 a Eckhaus–Benjamin–Feir instability in rotating convection. Phys. Rev. Lett. 78, 43914394.
Liu, Y. & Ecke, R. 1997 b Heat transport scaling in turbulent Rayleigh–Bénard convection: effects of rotation and Prandtl number. Phys. Rev. Lett. 79, 22572260.
Liu, Y. & Ecke, R. 1999 Nonlinear traveling waves in rotating Rayleigh–Bénard convection: stability boundaries and phase diffusion. Phys. Rev. E 59, 40914105.
Liu, Y. & Ecke, R. 2009 Heat transport measurements in turbulent rotating Rayleigh–Bénard convection. Phys. Rev. E 80, 036314.
Lohse, D. & Xia, K.-Q. 2010 Small-scale properties of turbulent Rayleigh–Bénard convection. Annu. Rev. Fluid Mech. 42, 335364.
Lucas, P., Pfotenhauer, J. & Donnelly, R. 1983 Stability and heat transfer of rotating cryogens. Part 1. Influence of rotation on the onset of convection in liquid 4He. J. Fluid Mech. 129, 251264.
Marshall, J. & Schott, F. 1999 Open-ocean convection: observations, theory and models. Rev. Geophys. 37, 164.
Miesch, M. S. 2000 The coupling of solar convection and rotation. Solar Phys. 192, 5989.
Millán-Rodríguez, J., Bestehorn, M., Perez-García, C., Friedrich, R. & Neufeld, M. 1995 Defect motion in rotating fluids. Phys. Rev. Lett. 74, 530533.
Mishra, P., De, A., Verma, M. & Eswaran, V. 2010 Dynamics of reorientations and reversals of large scale flow in Rayleigh–Bénard convection. J. Fluid Mech., in press (arXiv:1003.2102v4).
Neufeld, M., Friedrich, R. & Haken, H. 1993 Order parameter equation and model equation for high Prandtl number Rayleigh–Bénard convection in a rotating large aspect ratio system. Z. Phys. B 92, 243256.
Niemela, J., Babuin, S. & Sreenivasan, K. 2010 Turbulent rotating convection at high Rayleigh and Taylor numbers. J. Fluid Mech. 649, 509522.
Niemela, J. & Donnelly, R. 1986 Direct transition to turbulence in rotating Bénard convection. Phys. Rev. Lett. 57, 25242527.
Nikolaenko, A., Brown, E., Funfschilling, D. & Ahlers, G. 2005 Heat transport by turbulent Rayleigh–Bénard convection in cylindrical cells with aspect ratio one and less. J. Fluid Mech. 523, 251260.
Ning, L. & Ecke, R. 1993 a Küppers–Lortz transition at high dimensionless rotation rates in rotating Rayleigh–Bénard convection. Phys. Rev. E 47, R2991R2994.
Ning, L. & Ecke, R. 1993 b Rotating Rayleigh-Bénard convection: aspect-ratio dependence of the initial bifurcations. Phys. Rev. E 47, 33263333.
Pfotenhauer, J. M., Lucas, P. G. J. & Donnelly, R. J. 1984 Stability and heat transfer of rotating cryogens. Part 2. Effects of rotation on heat-transfer properties on convection in liquid 4He. J. Fluid Mech. 145, 239252.
Pfotenhauer, J., Niemela, J. & Donnelly, R. 1987 Stability and heat-transfer of rotating cryogens. Part 3. Effects of finite cylindrical geometry and rotation on the onset of convection. J. Fluid Mech. 175, 8596.
Ponty, Y., Passot, T. & Sulem, P. 1997 Chaos and structures in rotating convection at finite Prandtl number. Phys. Rev. Lett. 79, 7174.
Qiu, X. L. & Tong, P. 2002 Temperature oscillations in turbulent Rayleigh–Bénard convection. Phys. Rev. E 66, 026308.
Roche, P. E., Castaing, B., Chabaud, B. & Hebral, B. 2002 Prandtl and Rayleigh numbers dependences in Rayleigh–Bénard convection. Europhys. Lett. 58, 693698.
Rossby, H. T. 1969 A study of Bénard convection with and without rotation. J. Fluid Mech. 36, 309335.
Rubio, A., Lopez, J. & Marques, F. 2010 Onset of Küppers–Lortz-like dynamics in finite rotating thermal convection. J. Fluid Mech. 644, 337357.
Sakai, S. 1997 The horizontal scale of rotating convection in the geostrophic regime. J. Fluid Mech. 333, 8595.
Sánchez-Álvarez, J., Serre, E., del Arco, E. C. & Busse, F. 2005 Square patterns in rotating Rayleigh–Bénard convection. Phys. Rev. E 72, 036307.
Scheel, J., Mutyaba, P. & Kimmel, T. 2010 Patterns in rotating Rayleigh-Bénard convection at high rotation rates. J. Fluid Mech. (in press).
Schmitz, S. & Tilgner, A. 2009 Heat transport in rotating convection without Ekman layers. Phys. Rev. E 80, 015305.
Stevens, R., Clercx, H. & Lohse, D. 2010 a Boundary layers in rotating weakly turbulent Rayleigh–Bénard convection. Phys. Fluids 22, 085103.
Stevens, R., Clercx, H. & Lohse, D. 2010 b Optimal Prandtl number for heat transfer enhancement in rotating turbulent Rayleigh–Bénard convection. New J. Phys. 12, 075005.
Stevens, R., Zhong, J.-Q., Clercx, H., Ahlers, G. & Lohse, D. 2009 Transitions between turbulent states in rotating Rayleigh–Bénard convection. Phys. Rev. Lett. 103, 024503.
Sun, C., Xi, H. D. & Xia, K. Q. 2005 Azimuthal symmetry, flow dynamics, and heat transport in turbulent thermal convection in a cylinder with an aspect ratio of 0.5. Phys. Rev. Lett. 95, 074502.
Thompson, K., Bajaj, K. & Ahlers, G. 2002 Traveling concentric-roll patterns in Rayleigh–Bénard convection with modulated rotation. Phys. Rev. E 65, 046218.
Tilgner, A., Belmonte, A. & Libchaber, A. 1993 Temperature and velocity profiles of turbulence convection in water. Phys. Rev. E 47, R2253–R2256.
Tritton, D. J. 1988 Physical Fluid Dynamics. Oxford University Press.
Tu, Y. & Cross, M. 1992 Chaotic domain structure in rotating convection. Phys. Rev. Lett. 69, 2515.
Veronis, G. 1966 Motions at subcritical values of the Rayleigh number in a rotating fluid. J. Fluid Mech. 24, 545554.
Veronis, G. 1968 Large-amplitude Bénard convection in a rotating fluid. J. Fluid Mech. 31, 113139.
Vorobieff, P. & Ecke, R. E. 1998 Vortex structure in rotating Rayleigh–Bénard convection. Physica D 123, 153160.
Vorobieff, P. & Ecke, R. E. 2002 Turbulent rotating convection: an experimental study. J. Fluid Mech. 458, 191218.
Xi, H. D., Zhou, Q. & Xia, K. Q. 2006 Azimuthal motion of the mean wind in turbulent thermal convestion. Phys. Rev. E 73, 056312.
Xi, H.-D., Zhou, S.-Q., Zhou, Q., Chan, T.-S. & Xia, K.-Q. 2009 Origin of the temperature oscillation in turbulent thermal convection. Phys. Rev. Lett. 102, 044503.
Xia, K.-Q. 2007 Two clocks for a single engine in turbulent convection. J. Stat. Mech. 2007, N11001.
Xia, K.-Q., Lam, S. & Zhou, S. Q. 2002 Heat-flux measurement in high-Prandtl-number turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 88, 064501.
Zhong, F., Ecke, R. & Steinberg, V. 1993 Rotating Rayleigh–Bénard convection: asymmetric modes and vortex states. J. Fluid Mech. 249, 135159.
Zhong, J.-Q., Stevens, R., Clercx, H., Verzicco, R., Lohse, D. & Ahlers, G. 2009 Prandtl-, Rayleigh-, and Rossby-number dependence of heat transport in turbulent rotating Rayleigh–Bénard convection. Phys. Rev. Lett. 102, 044502.
Zhou, Q., Xi, H.-D., Zhou, S.-Q., Sun, C. & Xia, K.-Q. 2009 Oscillations of the large-scale circulation in turbulent Rayleigh–Bénard convection: the sloshing mode and its relationship with the torsional mode. J. Fluid Mech. 630, 367390.
Zhou, Q. & Xia, K.-Q. 2010 Measured instantaneous viscous boundary layer in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 104, 104301.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Related content

Powered by UNSILO
Type Description Title
PDF
Supplementary materials

Ahlers supplementary material
Tables.pdf

 PDF (71 KB)
71 KB

Heat transport and the large-scale circulation in rotating turbulent Rayleigh–Bénard convection

  • JIN-QIANG ZHONG (a1) and GUENTER AHLERS (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.