Ahlers, G., Grossmann, S. & Lohse, D.
2009
Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys.
81 (2), 503–537.

Alboussière, T., Deguen, R. & Melzani, M.
2010
Melting-induced stratification above the Earth’s inner core due to convective translation. Nature
466 (7307), 744–747.

Amit, H., Aubert, J. & Hulot, G.
2010
Stationary, oscillating or drifting mantle-driven geomagnetic flux patches?
J. Geophys. Res.
115 (B7), B07108.

Amit, H., Choblet, G., Olson, P., Monteux, J., Deschamps, F., Langlais, B. & Tobie, G.
2015a
Towards more realistic core–mantle boundary heat flux patterns: a source of diversity in planetary dynamos. Prog. Earth Planetary Sci.
2, 26.

Amit, H., Deschamps, F. & Choblet, G.
2015b
Numerical dynamos with outer boundary heat flux inferred from probabilistic tomography – consequences for latitudinal distribution of magnetic flux. Geophys. J. Intl
203, 840–855.

Aurnou, J. M., Calkins, M. A., Cheng, J. S., Julien, K., King, E. M., Nieves, D., Soderlund, K. M. & Stellmach, S.
2015
Rotating convective turbulence in Earth and planetary cores. Phys. Earth Planet. Inter.
246, 52–71.

Bloxham, J.
2000
The effect of thermal core–mantle interactions on the palaeomagnetic secular variation. Phil. Trans. R. Soc. Lond. A
358 (1768), 1171–1179.

Busse, F. H.
2002
Convective flows in rapidly rotating spheres and their dynamo action. Phys. Fluids
14 (4), 1301–1314.

Calkins, M. A., Hale, K., Julien, K., Nieves, D., Driggs, D. & Marti, P.
2015
The asymptotic equivalence of fixed heat flux and fixed temperature thermal boundary conditions for rapidly rotating convection. J. Fluid Mech.
784, R2.

Cheng, J. S., Stellmach, S., Ribeiro, A., Grannan, A., King, E. M. & Aurnou, J. M.
2015
Laboratory-numerical models of rapidly rotating convection in planetary cores. Geophys. J. Intl
201, 1–17.

Childs, H., Brugger, E., Whitlock, B., Meredith, J., Ahern, S., Pugmire, D., Biagas, K., Miller, M., Harrison, C., Weber, G. H.
et al.
2012
VisIt: an end-user tool for visualizing and analyzing very large data. In High Performance Visualization (ed. Wes Bethel, E., Childs, H. & Hansen, C.), pp. 357–372. Chapman and Hall.

Davies, C. J.
2015
Cooling history of Earth’s core with high thermal conductivity. Phys. Earth Planet. Inter.
247, 65–79.

Davies, C. J., Gubbins, D. & Jimack, P. K.
2009
Convection in a rapidly rotating spherical shell with an imposed laterally varying thermal boundary condition. J. Fluid Mech.
641, 335–358.

Davies, C. J., Gubbins, D., Willis, A. P. & Jimack, P. K.
2008
Time-averaged paleomagnetic field and secular variation: predictions from dynamo solutions based on lower mantle seismic tomography. Phys. Earth Planet. Inter.
169 (1–4), 194–203.

Dietrich, W., Hori, K. & Wicht, J.
2016
Core flows and heat transfer induced by inhomogeneous cooling with sub- and supercritical convection. Phys. Earth Planet. Inter.
251, 36–51.

Garnero, E. J., McNamara, A. K. & Shim, S.-H.
2016
Continent-sized anomalous zones with low seismic velocity at the base of Earth’s mantle. Nat. Geosci.
9 (7), 481–489.

Gastine, T., Wicht, J. & Aubert, J.
2016
Scaling regimes in spherical shell rotating convection. J. Fluid Mech.
808, 690–732.

Gastine, T., Wicht, J. & Aurnou, J. M.
2015
Turbulent Rayleigh–Bénard convection in spherical shells. J. Fluid Mech.
778, 721–764.

Gelman, S. E., Elkins-Tanton, L. T. & Seager, S.
2011
Effects of stellar flux on tidally locked terrestrial planets: degree-1 mantle convection and local magma ponds. Astrophys. J.
735 (2), 72.

Gibbons, S. J., Gubbins, D. & Zhang, K.
2007
Convection in rotating spherical fluid shells with inhomogeneous heat flux at the outer boundary. Geophys. Astrophys. Fluid Dyn.
101 (5–6), 347–370.

Gillet, N. & Jones, C. A.
2006
The quasi-geostrophic model for rapidly rotating spherical convection outside the tangent cylinder. J. Fluid Mech.
554, 343–369.

Gilman, P. A.
1977
Nonlinear dynamics of Boussinesq convection in a deep rotating spherical shell-i. Geophys. Astrophys. Fluid Dyn.
8 (1), 93–135.

Goluskin, D.
2015
Internally Heated Convection and Rayleigh–Bénard Convection. Springer.

Grossmann, S. & Lohse, D.
2000
Scaling in thermal convection: a unifying theory. J. Fluid Mech.
407, 27–56.

Grossmann, S. & Lohse, D.
2001
Thermal convection for large Prandtl numbers. Phys. Rev. Lett.
86 (15), 3316–3319.

Grossmann, S. & Lohse, D.
2002
Prandtl and Rayleigh number dependence of the Reynolds number in turbulent thermal convection. Phys. Rev. E
66 (1), 016305.

Gubbins, D., Willis, A. P. & Sreenivasan, B.
2007
Correlation of Earth’s magnetic field with lower mantle thermal and seismic structure. Phys. Earth Planet. Inter.
162 (3–4), 256–260.

Helffrich, G. & Kaneshima, S.
2013
Causes and consequences of outer core stratification. Phys. Earth Planet. Inter.
223 (C), 2–7.

Hunter, J. D.
2007
Matplotlib: a 2D graphics environment. Comput. Sci. Engng
9 (3), 90–95.

Johnston, H. & Doering, C. R.
2009
Comparison of turbulent thermal convection between conditions of constant temperature and constant flux. Phys. Rev. Lett.
102 (6), 064501.

Jones, C. A.
2015
Thermal and compositional convection in the outer core. In Treatise on Geophysics, 2nd edn (ed. Schubert, G.), vol. 8, pp. 115–159. Elsevier.

Julien, K., Aurnou, J. M., Calkins, M. A., Knobloch, E., Marti, P., Stellmach, S. & Vasil, G. M.
2016
A nonlinear model for rotationally constrained convection with Ekman pumping. J. Fluid Mech.
798, 50–87.

Julien, K., Knobloch, E., Rubio, A. M. & Vasil, G. M.
2012a
Heat transport in low-Rossby-number Rayleigh–Bénard convection. Phys. Rev. Lett.
109 (25), 254503.

Julien, K., Rubio, A. M., Grooms, I. & Knobloch, E.
2012b
Statistical and physical balances in low Rossby number Rayleigh–Bénard convection. Geophys. Astrophys. Fluid Dyn.
106 (4–5), 392–428.

Kavner, A. & Rainey, E. S. G.
2016
Heat transfer in the core and mantle. In Deep Earth Physics and Chemistry of the Lower Mantle and Core, Geophysical Monograph Series (ed. Terasaki, H. & Fischer, R. A.), pp. 31–42. Wiley.

King, E. M., Stellmach, S. & Aurnou, J. M.
2012
Heat transfer by rapidly rotating Rayleigh–Bénard convection. J. Fluid Mech.
691, 568–582.

King, E. M., Stellmach, S. & Buffett, B.
2013
Scaling behaviour in Rayleigh–Bénard convection with and without rotation. J. Fluid Mech.
717, 449–471.

King, E. M., Stellmach, S., Noir, J., Hansen, U. & Aurnou, J. M.
2009
Boundary layer control of rotating convection systems. Nature
457 (7227), 301–304.

Kono, M.
2015
Geomagnetism: an introduction and overview. In Treatise on Geophysics, 2nd edn (ed. Schubert, G.), vol. 5, pp. 1–31. Elsevier.

Lay, T., Hernlund, J. & Buffett, B. A.
2008
Core–mantle boundary heat flow. Nat. Geosci.
1 (1), 25–32.

Malkus, W. V. R.
1954
The heat transport and spectrum of thermal turbulence. Proc. R. Soc. Lond. A
225 (1161), 196–212.

Masters, G., Johnson, S., Laske, G. & Bolton, H.
1996
A shear-velocity model of the mantle. Phil. Trans. R. Soc. Lond. A
354 (1711), 1385–1411.

Matsui, H., Heien, E., Aubert, J., Aurnou, J. M., Avery, M., Brown, B., Buffett, B. A., Busse, F., Christensen, U. R., Davies, C. J.
et al.
2016
Performance benchmarks for a next generation numerical dynamo model. Geochem. Geophys. Geosyst.
17 (5), 1586–1607.

Nakagawa, T. & Tackley, P. J.
2008
Lateral variations in CMB heat flux and deep mantle seismic velocity caused by a thermal–chemical-phase boundary layer in 3D spherical convection. Earth Planet. Sci. Lett.
271 (1–4), 348–358.

Nimmo, F.
2015
Thermal and compositional evolution of the core. In Treatise on Geophysics, 2nd edn (ed. Schubert, G.), vol. 9, pp. 201–219. Elsevier.

Oliveira, J. S. & Wieczorek, M. A.
2017
Testing the axial dipole hypothesis for the Moon by modeling the direction of crustal magnetization. J. Geophys. Res.
122 (2), 383–399.

Olson, P.
2003
Thermal interaction of the core and mantle. In Earth’s Core and Lower Mantle, pp. 1–38. Taylor & Francis.

Olson, P.
2016
Mantle control of the geodynamo: consequences of top–down regulation. Geochem. Geophys. Geosyst.
17 (5), 1935–1956.

Olson, P. & Christensen, U. R.
2002
The time-averaged magnetic field in numerical dynamos with non-uniform boundary heat flow. Geophys. J. Intl
151 (3), 809–823.

Olson, P., Deguen, R., Hinnov, L. A. & Zhong, S.
2013
Controls on geomagnetic reversals and core evolution by mantle convection in the Phanerozoic. Phys. Earth Planet. Inter.
214 (C), 87–103.

Olson, P., Deguen, R., Rudolph, M. L. & Zhong, S.
2015
Core evolution driven by mantle global circulation. Phys. Earth Planet. Inter.
243 (C), 44–55.

Orszag, S. A.
1971
Numerical simulation of incompressible flows within simple boundaries. I. Galerkin (spectral) representations. Stud. Appl. Maths
50 (4), 293–327.

Otero, J., Wittenberg, R. W., Worthing, R. A. & Doering, C. R.
2002
Bounds on Rayleigh–Bénard convection with an imposed heat flux. J. Fluid Mech.
473, 191–199.

Plumley, M., Julien, K., Marti, P. & Stellmach, S.
2016
The effects of Ekman pumping on quasi-geostrophic Rayleigh–Bénard convection. J. Fluid Mech.
803, 51–71.

Spiegel, E. A. & Veronis, G.
1960
On the Boussinesq approximation for a compressible fluid. Astrophys. J.
131, 442–447.

Sprague, M., Julien, K., Knobloch, E. & Werne, J.
2006
Numerical simulation of an asymptotically reduced system for rotationally constrained convection. J. Fluid Mech.
551, 141–174.

Šrámek, O. & Zhong, S.
2010
Long-wavelength stagnant lid convection with hemispheric variation in lithospheric thickness: link between Martian crustal dichotomy and Tharsis?
J. Geophys. Res.
115 (E9), E09010.

Stellmach, S., Lischper, M., Julien, K., Vasil, G., Cheng, J. S., Ribeiro, A., King, E. M. & Aurnou, J. M.
2014
Approaching the asymptotic regime of rapidly rotating convection: boundary layers versus interior dynamics. Phys. Rev. Lett.
113 (25), 254501.

Stevens, R. J. A. M., van der Poel, E. P., Grossmann, S. & Lohse, D.
2013
The unifying theory of scaling in thermal convection: the updated prefactors. J. Fluid Mech.
730, 295–308.

Stevens, R. J. A. M., Verzicco, R. & Lohse, D.
2010
Radial boundary layer structure and Nusselt number in Rayleigh–Bénard convection. J. Fluid Mech.
643, 495–507.

Sumita, I. & Olson, P.
1999
A laboratory model for convection in Earth’s core driven by a thermally heterogeneous mantle. Science
286 (5444), 1547–1549.

Sumita, I. & Olson, P.
2002
Rotating thermal convection experiments in a hemispherical shell with heterogeneous boundary heat flux: implications for the Earth’s core. J. Geophys. Res.
107 (B8), 2169.

Takahashi, F. & Tsunakawa, H.
2009
Thermal core–mantle coupling in an early lunar dynamo: implications for a global magnetic field and magnetosphere of the early Moon. Geophys. Res. Lett.
36 (24), L24202.

Willis, A. P., Sreenivasan, B. & Gubbins, D.
2007
Thermal core–mantle interaction: exploring regimes for ‘locked’ dynamo action. Phys. Earth Planet. Inter.
165 (1–2), 83–92.

Zhang, K. & Gubbins, D.
1993
Convection in a rotating spherical fluid shell with an inhomogeneous temperature boundary condition at infinite Prandtl number. J. Fluid Mech.
250, 209–232.

Zhang, K. & Gubbins, D.
1996
Convection in a rotating spherical fluid shell with an inhomogeneous temperature boundary condition at finite Prandtl number. Phys. Fluids
8 (5), 1141–1148.

Zhang, N. & Zhong, S.
2011
Heat fluxes at the Earth’s surface and core–mantle boundary since Pangea formation and their implications for the geomagnetic superchrons. Earth Planet. Sci. Lett.
306 (3–4), 205–216.

Zhong, J.-Q., Stevens, R. J. A. M., Clercx, H. J. H., Verzicco, R., Lohse, D. & Ahlers, G.
2009
Prandtl-, Rayleigh-, and Rossby-number dependence of heat transport in turbulent rotating Rayleigh–Bénard convection. Phys. Rev. Lett.
102 (4), 044502.

Zhong, S.
2009
Migration of Tharsis volcanism on Mars caused by differential rotation of the lithosphere. Nat. Geosci.
2 (1), 19–23.

Zhong, S., Zhang, N., Li, Z.-X. & Roberts, J. H.
2007
Supercontinent cycles, true polar wander, and very long-wavelength mantle convection. Earth Planet. Sci. Lett.
261 (3–4), 551–564.