Skip to main content Accessibility help
×
Home

Has the ultimate state of turbulent thermal convection been observed?

  • L. Skrbek (a1) and P. Urban (a2)

Abstract

An important question in turbulent Rayleigh–Bénard convection is the scaling of the Nusselt number with the Rayleigh number in the so-called ultimate state, corresponding to asymptotically high Rayleigh numbers. A related but separate question is whether the measurements support the so-called Kraichnan law, according to which the Nusselt number varies as the square root of the Rayleigh number (modulo a logarithmic factor). Although there have been claims that the Kraichnan regime has been observed in laboratory experiments with low aspect ratios, the totality of existing experimental results presents a conflicting picture in the high-Rayleigh-number regime. We analyse the experimental data to show that the claims on the ultimate state leave open an important consideration relating to non-Oberbeck–Boussinesq effects. Thus, the nature of scaling in the ultimate state of Rayleigh–Bénard convection remains open.

Copyright

Corresponding author

Email address for correspondence: skrbek@nbox.troja.mff.cuni.cz

References

Hide All
Ahlers, G., Araujo, F. F., Funfschilling, D., Grossmann, S. & Lohse, D. 2007 Non-Oberbeck–Boussinesq effects in gaseous Rayleigh–Bénard convection. Phys. Rev. Lett. 98, 054501.
Ahlers, G., Bodenschatz, E., Funfschilling, D., Grossmann, S., He, X. Z., Lohse, D., Stevens, R. J. A. M. & Verzicco, R. 2012a Logarithmic temperature profiles in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 109, 114501.
Ahlers, G., Grossmann, S. & Lohse, D. 2009 Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81, 503537.
Ahlers, G., He, X., Funfschilling, D. & Bodenschatz, E. 2012b Heat transport by turbulent Rayleigh–Bénard convection for $Pr\simeq 0.8$ and $3\times 10^{12}\lesssim Ra\lesssim 10^{15}$ : aspect ratio ${\it\Gamma}=0.50$ . New J. Phys. 14, 103012.
Castaing, B., Gunaratne, G., Heslot, F., Kadanoff, L., Libchaber, A., Thomae, S., Wu, X. Z., Zaleski, S. & Zanetti, G. 1989 Scaling of hard thermal turbulence in Rayleigh–Bénard convection. J. Fluid Mech. 204, 130.
Chavanne, X., Chillà, F., Castaing, B., Hébral, B., Chabaud, B. & Chaussy, J. 1997 Observation of the ultimate regime in Rayleigh–Bénard convection. Phys. Rev. Lett. 79, 36483651.
Chavanne, X., Chillà, F., Chabaud, B., Castaing, B. & Hébral, B. 2001 Turbulent Rayleigh–Bénard convection in gaseous and liquid He. Phys. Fluids 13, 13001320.
Chillà, F. & Schumacher, J. 2012 New perspectives in turbulent Rayleigh–Bénard convection. Eur. Phys. J. E 35, 58.
Doering, C. R.2012 Rigorous results for heat transport in high Rayleigh number convection. In International Conference on RB Turbulence, Hong Kong.
Funfschilling, D., Bodenschatz, E. & Ahlers, G. 2009 Search for the ‘ultimate state’ in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 103, 014503.
Grossmann, S. & Lohse, D. 2000 Scaling in thermal convection: a unifying theory. J. Fluid Mech. 407, 2756.
He, X., Funfschilling, D., Bodenschatz, E. & Ahlers, G. 2012a Heat transport by turbulent Rayleigh–Bénard convection for $Pr\simeq 0.8$ and $4\times 10^{11}\lesssim Ra\lesssim 2\times 10^{14}$ : ultimate-state transition for aspect ratio ${\it\Gamma}=1.00$ . New J. Phys. 14, 063030.
He, X., Funfschilling, D., Nobach, H., Bodenschatz, E. & Ahlers, G. 2012b Transition to the ultimate state of turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 108, 024502.
He, X., Funfschilling, D., Nobach, H., Bodenschatz, E. & Ahlers, G. 2013 Comment on ‘Effect of boundary layers asymmetry on heat transfer efficiency in turbulent Rayleigh–Bénard convection at very high Rayleigh numbers’. Phys. Rev. Lett. 110, 199401.
He, X., van Gils, P. M., Bodenschatz, E. & Ahlers, G.2014 Transition of heat transfer by turbulent Rayleigh–Bénard convection at high $Ra$ . In Abstract book of the EFMC 10 Conference, Copenhagen, Sept. 14–18.
Kraichnan, R. H. 1962 Turbulent thermal convection at arbitrary Prandtl number. Phys. Fluids 5, 13741389.
Malkus, M. V. R. 1954 The heat transport and spectrum of thermal turbulence. Proc. R. Soc. Lond. A 225, 196212.
Niemela, J. J., Skrbek, L., Sreenivasan, K. R. & Donnelly, R. J. 2000 Turbulent convection at very high Rayleigh numbers. Nature 404, 837840.
Niemela, J. J., Skrbek, L., Sreenivasan, K. R. & Donnelly, R. J. 2001 The wind in confined thermal convection. J. Fluid Mech. 449, 169178.
Niemela, J. J. & Sreenivasan, K. R. 2003 Confined turbulent convection. J. Fluid Mech. 481, 355384.
Niemela, J. J. & Sreenivasan, K. R. 2006 The use of cryogenic helium for classical turbulence. J. Low Temp. Phys. 143, 163212.
Niemela, J. J. & Sreenivasan, K. R. 2010 Does confined turbulent convection ever attain the ‘asymptotic scaling’ with $1/2$ -power? New J. Phys. 12, 115002.
Priestley, C. H. B. 1959 Turbulent Transfer in the Lower Atmosphere. vol. 42, pp. 36503653. University of Chicago Press.
Roche, P. E., Gauthier, F., Kaiser, R. & Salort, J. 2010 On the triggering of the ultimate regime of convection. New J. Phys. 12, 085014.
Shraiman, B. I. & Siggia, E. D. 1990 Heat transport in high-Rayleigh number convection. Phys. Rev. A 42, 36503653.
Spiegel, E. A. 1971 Convection in stars 1: basic Boussinesq convection. Annu. Rev. Astron. Astrophys. 9, 323.
Sreenivasan, K. R. 1998 Helium flows at ultra-high Reynolds and Rayleigh numbers. In Flow at ultra-high Reynolds and Rayleigh numbers (ed. Donnelly, R. J. & Sreenivasan, K. R.), pp. 2951. Springer.
Stevens, R. J. A. M., van der Poel, E. P., Grossmann, S. & Lohse, D. 2013 The unifying theory of scaling in thermal convection: the updated prefactors. J. Fluid Mech. 730, 295308.
Thalabard, S., Saint-Michel, B., Herbert, E., Daviaud, F. & Dubrulle, B. 2015 A statistical mechanics framework for the large-scale structure of turbulent von Karman flows. New J. Phys. 17, 063006.
Tritton, D. J. 1988 Physical Fluid Dynamics. Oxford University Press.
Urban, P., Hanzelka, P., Králík, T., Musilová, V., Skrbek, L. & Srnka, A. 2010 Helium cryostat for experimental study of natural turbulent convection. Rev. Sci. Instrum. 81, 085103.
Urban, P., Hanzelka, P., Králík, T., Musilová, V., Srnka, A. & Skrbek, L. 2012 Effect of boundary layers asymmetry on heat transfer efficiency in turbulent Rayleigh–Bénard convection at very high Rayleigh numbers. Phys. Rev. Lett. 109, 154301.
Urban, P., Hanzelka, P., Králík, T., Musilová, V., Srnka, A. & Skrbek, L. 2013 Reply to Comment on ‘Effect of boundary layers asymmetry on heat transfer efficiency in turbulent Rayleigh–Bénard convection at very high Rayleigh numbers’. Phys. Rev. Lett. 110, 199402.
Urban, P., Hanzelka, P., Musilová, V., Králík, T., La Mantia, M., Srnka, A. & Skrbek, L. 2014 Heat transfer in cryogenic helium gas by turbulent Rayleigh–Bénard convection in a cylindrical cell of aspect ratio 1. New J. Phys. 16, 053042.
Urban, P., Musilová, V. & Skrbek, L. 2011 Efficiency of heat transfer in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 107, 014302.
Wu, X.-Z.1991 Along a road to developed turbulence: free thermal convection in low temperature helium gas. PhD thesis, University of Chicago, pp. 1–123.
Wu, X.-Z. & Libchaber, A. 1991 Non-Boussinesq effects in free thermal convection. Phys. Rev. A 43, 28332839.
Zhong, J. Q., Funfschilling, D. & Ahlers, G. 2009 Enhanced heat transport by turbulent two-phase Rayleigh–Bénard convection. Phys. Rev. Lett. 102, 124501.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Has the ultimate state of turbulent thermal convection been observed?

  • L. Skrbek (a1) and P. Urban (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed