## References

Barron, R. F., Wang, X., Ameel, T. A. & Warrington, R. O.
1997
The Graetz problem extended to slip-flow. Intl J. Heat Mass Transfer
40 (8), 1817–1823.

Barrow, H. & Humphreys, J. F.
1970
The effect of velocity distribution on forced convection laminar flow heat transfer in a pipe at constant wall temperature. Wärme Stoffübertrag.
3 (4), 227–231.

Bird, R. B., Stewart, W. E. & Lightfoot, E. N.
2007
Transport Phenomena, 2nd edn.
John Wiley & Sons.

Bocquet, L. & Barrat, J.-L.
2007
Flow boundary conditions from nano- to micro-scales. Soft Matt.
3, 685–693.

Colin, S.
2011
Gas microflows in the slip flow regime: a critical review on convective heat transfer. J. Heat Transfer
134 (2), 020908.

Eckert, E. R. G. & Drake, R. M.
1972
Analysis of Heat and Mass Transfer. McGraw-Hill.

Enright, R., Hodes, M., Salamon, T. & Muzychka, Y.
2013
Isoflux Nusselt number and slip length formulae for superhydrophobic microchannels. J. Heat Transfer
136 (1), 012402. doi:10.1115/1.4024837.

Ezquerra Larrodé, F., Housiadas, C. & Drossinos, Y.
2000
Slip-flow heat transfer in circular tubes. Intl J. Heat Mass Transfer
43 (15), 2669–2680.

Graetz, L.
1882
Über die Wärmeleitungsfähigkeit von Flüssigkeiten. Ann. Phys.
254 (1), 79–94.

Graetz, L.
1885
Über die Wärmeleitungsfähigkeit von Flüssigkeiten. Ann. Phys.
261 (7), 337–357.

Jakob, M.
1949
Heat Transfer, vol. 1. John Wiley & Sons.

Karniadakis, G., Beskok, A. & Aluru, N.
2005
Microflows and Nanoflows: Fundamentals and Simulation. Springer.

Lafuma, A. & Quéré, D.
2011
Slippery pre-suffused surfaces. Europhys. Lett.
96 (5), 56001.

Lauga, E., Brenner, M. P. & Stone, H. A.
2007
Microfluidics: the no-slip boundary condition. In Springer Handbook of Experimental Fluid Mechanics (ed. Tropea, C., Yarin, A. L. & Foss, J. F.), pp. 1219–1240. Springer.

Lévêque, M. A.
1928
Les lois de la transmission de chaleur par convection. Ann. Mines, Mem., Ser.
13 (12), 201–299, 305–362, 381–415.

Majumder, M., Chopra, N. & Hinds, B. J.
2011
Mass transport through carbon nanotube membranes in three different regimes: ionic diffusion and gas and liquid flow. ACS Nano
5 (5), 3867–3877.

Maynes, D., Webb, B. W. & Davies, J.
2008
Thermal transport in a microchannel exhibiting ultrahydrophobic microribs maintained at constant temperature. J. Heat Transfer
130 (2), 022402.

Maynes, D., Webb, B. W., Crockett, J. & Solovjov, V.
2012
Analysis of laminar slip-flow thermal transport in microchannels with transverse rib and cavity structured superhydrophobic walls at constant heat flux. J. Heat Transfer
135 (2), 021701. doi:10.1115/1.4007429.

Navier, C. L. M. H.
1823
Mémoire sur les lois du mouvement des fluids. Mem. Acad. Sci. Inst. Fr.
6, 389–416, 432–436.

Nusselt, W.
1910
Die Abhängigkeit der Wärmeübergangszahl von der Rohrlänge. Z. Verein. Deutsch. Ing.
54 (28), 1154–1158.

Rothstein, J. P.
2010
Slip on superhydrophobic surfaces. Annu. Rev. Fluid Mech.
42 (1), 89–109.

Shah, R. K. & London, A. L.
1978
Laminar Flow Forced Convection in Ducts: A Source Book for Compact Heat Exchanger Analytical Data. Academic.

Sparrow, E. M. & Lin, S. H.
1962
Laminar heat transfer in tubes under slip-flow conditions. J. Heat Transfer
84 (4), 363–369.

Whitby, M. & Quirke, N.
2007
Fluid flow in carbon nanotubes and nanopipes. Nat. Nano
2 (2), 87–94.

Wong, T.-S., Kang, S. H., Tang, S. K. Y., Smythe, E. J., Hatton, B. D., Grinthal, A. & Aizenberg, J.
2011
Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature
477 (7365), 443–447.