Skip to main content Accessibility help

Global bifurcations to subcritical magnetorotational dynamo action in Keplerian shear flow

  • A. Riols (a1) (a2), F. Rincon (a1) (a2), C. Cossu (a3), G. Lesur (a4), P.-Y. Longaretti (a4), G. I. Ogilvie (a5) and J. Herault (a6)...


Magnetorotational dynamo action in Keplerian shear flow is a three-dimensional nonlinear magnetohydrodynamic process, the study of which is relevant to the understanding of accretion processes and magnetic field generation in astrophysics. Transition to this form of dynamo action is subcritical and shares many characteristics with transition to turbulence in non-rotating hydrodynamic shear flows. This suggests that these different fluid systems become active through similar generic bifurcation mechanisms, which in both cases have eluded detailed understanding so far. In this paper, we build on recent work on the two problems to investigate numerically the bifurcation mechanisms at work in the incompressible Keplerian magnetorotational dynamo problem in the shearing box framework. Using numerical techniques imported from dynamical systems research, we show that the onset of chaotic dynamo action at magnetic Prandtl numbers larger than unity is primarily associated with global homoclinic and heteroclinic bifurcations of nonlinear magnetorotational dynamo cycles born out of saddle-node bifurcations. These global bifurcations are found to be supplemented by local bifurcations of cycles marking the beginning of period-doubling cascades. The results suggest that nonlinear magnetorotational dynamo cycles provide the pathway to injection of both kinetic and magnetic energy for the problem of transition to turbulence and dynamo action in incompressible magnetohydrodynamic Keplerian shear flow in the absence of an externally imposed magnetic field. Studying the nonlinear physics and bifurcations of these cycles in different regimes and configurations may subsequently help to understand better the physical conditions of excitation of magnetohydrodynamic turbulence and instability-driven dynamos in a variety of astrophysical systems and laboratory experiments. The detailed characterization of global bifurcations provided for this three-dimensional subcritical fluid dynamics problem may also prove useful for the problem of transition to turbulence in hydrodynamic shear flows.


Corresponding author

Email address for correspondence:


Hide All
Armitage, P. J. 2010 Astrophysics of Planet Formation. Cambridge University Press.
Avila, K., Moxey, D., de Lozar, A., Avila, M., Barkley, D. & Hof, B. 2011 The onset of turbulence in pipe flow. Science 333, 192.
Balay, S., Brown, J., Buschelman, K., Gropp, W. D., Kaushik, D., Knepley, M. G., McInnes, L. C., Smith, B. F. & Zhang, H. 2011 PETSc Web page.
Balbus, S. A. 2003 Enhanced angular momentum transport in accretion disks. Annu. Rev. Astron. Astrophys. 41, 555.
Balbus, S. A. & Hawley, J. F. 1991 A powerful local shear instability in weakly magnetized disks. I. Linear analysis. Astrophys. J. 376, 214.
Balbus, S. A. & Hawley, J. F. 1992 A powerful local shear instability in weakly magnetized disks. IV. Non-axisymmetric perturbations. Astrophys. J. 400, 610.
Balbus, S. A. & Hawley, J. F. 1998 Instability, turbulence, and enhanced transport in accretion disks. Rev. Mod. Phys. 70, 1.
Balbus, S. A. & Henri, P. 2008 On the magnetic Prandtl number behaviour of accretion disks. Astrophys. J. 674, 408.
Barkley, D. 2011 Simplifying the complexity of pipe flow. Phys. Rev. E 84, 016309.
Birkhoff, G. D. 1935 Nouvelles recherches sur les systèmes dynamiques. Mem. Pont. Acad. Sci. Nov. Lyn. 1, 85.
Bodo, G., Cattaneo, F., Ferrari, A., Mignone, A. & Rossi, P. 2011 Symmetries, scaling laws, and convergence in shearing-box simulations of magneto-rotational instability driven turbulence. Astrophys. J. 739, 82.
Brandenburg, A. & Dintrans, B. 2006 Non-axisymmetric stability in the shearing sheet approximation. Astron. Astrophys. 450, 437.
Brandenburg, A., Nordlund, A., Stein, R. F. & Torkelsson, U. 1995 Dynamo-generated turbulence and large-scale magnetic fields in a Keplerian shear flow. Astrophys. J. 446, 741.
Canuto, C., Hussaini, M. Y., Quarteroni, A. & Zang, T. A. 1988 Spectral Methods in Fluid Dynamics. Springer.
Casciola, C. M., Gualtieri, P., Benzi, R. & Piva, R. 2003 Scale-by-scale budget and similarity laws for shear turbulence. J. Fluid Mech. 476, 105.
Chandler, G. J. & Kerswell, R. R. 2013 Invariant recurrent solutions embedded in a turbulent two-dimensional Kolmogorov flow. J. Fluid Mech. 722, 554.
Chandrasekhar, S. 1960 The stability of non-dissipative Couette flow in hydromagnetics. Proc. Natl Acad. Sci. 46, 253.
Childress, S. & Gilbert, A. D. 1995 Stretch, Twist, Fold. The Fast Dynamo. Springer.
Christiansen, F., Cvitanović, P. & Putkaradze, V. 1997 Spatiotemporal chaos in terms of unstable recurrent patterns. Nonlinearity 10, 55.
Cline, K. S., Brummell, N. H. & Cattaneo, F. 2003 Dynamo action driven by shear and magnetic buoyancy. Astrophys. J. 599, 1449.
Collins, C., Katz, N., Wallace, J., Jara-Almonte, J., Reese, I., Zweibel, E. & Forest, C. B. 2012 Stirring unmagnetized plasma. Phys. Rev. Lett. 108, 115001.
Cvitanović, P. 1992 Periodic orbit theory in classical and quantum mechanics. Chaos 2, 1.
Cvitanović, P. & Gibson, J. F. 2010 Geometry of the turbulence in wall-bounded shear flows: periodic orbits. Phys. Scr. 142, 014007.
Darbyshire, A. G. & Mullin, T. 1995 Transition to turbulence in constant-mass-flux pipe flow. J. Fluid Mech. 289, 83.
Dauchot, O. & Daviaud, F. 1995a Finite amplitude perturbation and spots growth mechanism in plane Couette flow. Phys. Fluids 7, 335.
Dauchot, O. & Daviaud, F. 1995b Streamwise vortices in plane Couette flow. Phys. Fluids 7, 901.
Davies, C. R. & Hughes, D. W. 2011 The mean electromotive force resulting from magnetic buoyancy instability. Astrophys. J. 727, 112.
Davis, S. W., Stone, J. M. & Pessah, M. E. 2010 Sustained magnetorotational turbulence in local simulations of stratified disks with zero net magnetic flux. Astrophys. J. 713, 52.
Ding, M., Grebogi, C., Ott, E. & Yorke, J. A. 1990 Transition to chaotic scattering. Phys. Rev. A 42, 7025.
Duguet, Y., Pringle, C. C. T. & Kerswell, R. R. 2008a Relative periodic orbits in transitional pipe flow. Phys. Fluids 20, 114102.
Duguet, Y., Willis, A. P. & Kerswell, R. R. 2008b Transition in pipe flow: the saddle structure on the boundary of turbulence. J. Fluid Mech. 613, 255.
Eckhardt, B. 2009 Introduction. Turbulence transition in pipe flow: 125th anniversary of the publication of Reynolds’ paper. Proc. R. Soc. Lond. A 367, 449.
Eckhardt, B., Schneider, T. M., Hof, B. & Westerweel, J. 2007 Turbulence transition in pipe flow. Annu. Rev. Fluid Mech. 39, 447.
Faisst, H. & Eckhardt, B. 2003 Traveling waves in pipe flow. Phys. Rev. Lett. 91, 224502.
Faisst, H. & Eckhardt, B. 2004 Sensitive dependence on initial conditions in transition to turbulence in pipe flow. J. Fluid Mech. 504, 343.
Feigenbaum, M. J. 1978 Quantitative universality for a class of nonlinear transformations. J. Stat. Phys. 19, 25.
Frank, J., King, A. & Raine, D. J. 2002 Accretion Power in Astrophysics, 3rd edn. Cambridge University Press.
Fromang, S. & Papaloizou, J. C. B. 2007 MHD simulations of the magnetorotational instability in a shearing box with zero net flux. I. The issue of convergence. Astron. Astrophys. 476, 1113.
Fromang, S., Papaloizou, J. C. B., Lesur, G. & Heinemann, T. 2007 MHD simulations of the magnetorotational instability in a shearing box with zero net flux. II. The effect of transport coefficients. Astron. Astrophys. 476, 1123.
Gallet, B., Herault, J., Laroche, C., Pétrélis, F & Fauve, S. 2012 Reversals of large-scale fields generated over a turbulent background. Geophys. Astrophys. Fluid Dyn. 106, 468.
Gavrilov, N. & Shil’nikov, L. 1972 On the three-dimensional dynamical systems close to a system with a structurally unstable homoclinic curve, i. Math. USSR Sb. 17, 467.
Gibson, J. F., Halcrow, J. & Cvitanović, P. 2008 Visualizing the geometry of state space in plane Couette flow. J. Fluid Mech. 611, 107.
Gibson, J. F., Halcrow, J. & Cvitanović, P. 2009 Equilibrium and travelling-wave solutions of plane Couette flow. J. Fluid Mech. 638, 243.
Gissinger, C. 2012 A new deterministic model for chaotic reversals. Eur. Phys. J. B 85, 137.
Goldreich, P. & Lynden-Bell, D. 1965 II. Spiral arms as sheared gravitational instabilities. Mon. Not. R. Astron. Soc. 130, 125.
Goswami, B. K. & Basu, S. 2002 Self-similar organization of Gavrilov–Silnikov–Newhouse sinks. Phys. Rev. E 65, 036210.
Grassberger, P., Kantz, H. & Moenig, U. 1989 On the symbolic dynamics of the Hénon map. J. Phys. A 22, 5217.
Grebogi, C., Ott, E. & Yorke, J. A. 1982 Chaotic attractors in crisis. Phys. Rev. Lett. 48, 1507.
Grebogi, C., Ott, E. & Yorke, J. A. 1983 Crises, sudden changes in chaotic attractors, and transient chaos. Physica D 7, 181.
Grebogi, C., Ott, E. & Yorke, J. A. 1987 Basin boundary metamorphoses: changes in accessible boundary orbits. Physica D 24, 243.
Gressel, O. 2010 A mean-field approach to the propagation of field patterns in stratified magnetorotational turbulence. Mon. Not. R. Astron. Soc. 405, 41.
Grossmann, S. 2000 The onset of shear flow turbulence. Rev. Mod. Phys. 72, 603.
Gualtieri, P., Casciola, C. M., Benzi, R., Amati, G. & Piva, R. 2002 Scaling laws and intermittency in homogeneous shear flow. Phys. Fluids 14, 583.
Halcrow, J., Gibson, J. F., Cvitanović, P. & Viswanath, D. 2009 Heteroclinic connections in plane Couette flow. J. Fluid Mech. 621, 365.
Hamilton, J. M., Kim, J. & Waleffe, F. 1995 Regeneration mechanisms of near-wall turbulence structures. J. Fluid Mech. 287, 317.
Hartmann, L. 2009 Accretion Processes in Star Formation, 2nd edn. Cambridge University Press.
Hawley, J. F. & Balbus, S. A. 1991 A powerful local shear instability in weakly magnetized disks. II. Nonlinear evolution. Astrophys. J. 376, 223.
Hawley, J. F., Gammie, C. F. & Balbus, S. A. 1995 Local three-dimensional magnetohydrodynamic simulations of accretion disks. Astrophys. J. 440, 742.
Hawley, J. F., Gammie, C. F. & Balbus, S. A. 1996 Local three-dimensional simulations of an accretion disk hydromagnetic dynamo. Astrophys. J. 464, 690.
Hénon, M. 1976 A two-dimensional mapping with a strange attractor. Commun. Math. Phys. 50, 69.
Herault, J., Rincon, F., Cossu, C., Lesur, G., Ogilvie, G. I. & Longaretti, P.-Y. 2011 Periodic magnetorotational dynamo action as a prototype of nonlinear magnetic-field generation in shear flows. Phys. Rev. E 84, 036321.
Hernandez, V., Roman, J. E. & Vidal, V. 2005 SLEPc: a scalable and flexible toolkit for the solution of eigenvalue problems. ACM Trans. Math. Softw. 31, 351.
Hof, B., van Doorne, C. W. H., Westerweel, J., Nieuwstadt, F. T. M., Faisst, H., Eckhardt, B., Wedin, H., Kerswell, R. R. & Waleffe, F. 2004 Experimental observation of nonlinear travelling waves in turbulent pipe flow. Science 305, 1594.
Hof, B., Juel, A. & Mullin, T. 2003 Scaling of the turbulence transition threshold in a pipe. Phys. Rev. Lett. 91, 244502.
Hof, B., de Lozar, A., Kuik, D. J. & Westerweel, J. 2008 Repeller or attractor? Selecting the dynamical model for the onset of turbulence in pipe flow. Phys. Rev. Lett. 101, 214501.
Hof, B., Westerweel, J., Schneider, T. M. & Eckhardt, B. 2006 Finite lifetime of turbulence in shear flows. Nature 443, 59.
Hwang, Y. & Cossu, C. 2010 Self-sustained process at large-scales in turbulent channel flow. Phys. Rev. Lett. 105, 044505.
Hwang, Y. & Cossu, C. 2011 Self-sustained processes in the logarithmic layer of turbulent channel flows. Phys. Fluids 23, 061702.
Itano, T. & Toh, S. 2001 The dynamics of bursting process in wall turbulence. J. Phys. Soc. Japan 70, 703.
Käpylä, P. J. & Korpi, M. J. 2011 Magnetorotational instability driven dynamos at low magnetic Prandtl numbers. Mon. Not. R. Astron. Soc. 413, 901.
Kawahara, G. & Kida, S. 2001 Periodic motion embedded in plane Couette turbulence: regeneration cycle and burst. J. Fluid Mech. 449, 291.
Kawahara, G., Uhlmann, M. & van Veen, L. 2012 The significance of simple invariant solutions in turbulent flows. Annu. Rev. Fluid Mech. 44, 203.
Kelvin, Lord 1887 Stability of fluid motion – rectilineal motion of viscous fluid between two parallel planes. Phil. Mag. 24, 188.
Kerswell, R. R. 2005 Recent progress in understanding the transition to turbulence in a pipe. Nonlinearity 18, 17.
Kerswell, R. R. & Tutty, O. R. 2007 Recurrence of travelling waves in transitional pipe flow. J. Fluid Mech. 584, 69.
Kim, L. & Moehlis, J. 2008 Characterizing the edge of chaos for a shear flow model. Phys. Rev. E 78, 036315.
Knobloch, E. 1985 The stability of non-separable barotropic and baroclinic shear flows. Astrophys. Space Sci. 116, 149.
Knobloch, E. & Moore, D. R. 1986 Transition to chaos in two-dimensional double-diffusive convection. J. Fluid Mech. 166, 409.
Knobloch, E. & Weiss, N. O. 1981 Bifurcations in a model of double-diffusive convection. Phys. Lett. A 85, 127.
Korycansky, D. G. 1992 Growth and decay of disturbances in stratified shear flow in a rotating frame. Astrophys. J. 399, 176.
Kreilos, T. & Eckhardt, B. 2012 Periodic orbits near the onset of chaos in plane Couette flow. Chaos 22, 047505.
Lan, Y. & Cvitanović, P. 2008 Unstable recurrent patterns in Kuramoto–Sivashinsky dynamics. Phys. Rev. E 78, 026208.
Landahl, M. T. 1980 A note on an algebraic instability of inviscid parallel shear flows. J. Fluid Mech. 98, 243.
Lebovitz, N. R. 2009 Shear-flow transition: the basin boundary. Nonlinearity 22, 2645.
Lebovitz, N. R. 2012 Boundary collapse in models of shear-flow transition. Commun. Nonlinear Sci. Numer. Simul. 17, 2095.
Lesur, G. & Longaretti, P.-Y. 2005 On the relevance of subcritical hydrodynamic turbulence to accretion disk transport. Astron. Astrophys. 444, 25.
Lesur, G. & Longaretti, P.-Y. 2007 Impact of dimensionless numbers on the efficiency of magnetorotational instability induced turbulent transport. Mon. Not. R. Astron. Soc. 378, 1471.
Lesur, G. & Ogilvie, G. I. 2008a Localized magnetorotational instability and its role in the accretion disc dynamo. Mon. Not. R. Astron. Soc. 391, 1437.
Lesur, G. & Ogilvie, G. I. 2008b On self-sustained dynamo cycles in accretion discs. Astron. Astrophys. 488, 451.
Lin, D. N. C. & Papaloizou, J. C. B. 1996 Theory of accretion disks II: application to observed systems. Annu. Rev. Astron. Astrophys. 34, 703.
Longaretti, P.-Y. & Lesur, G. 2010 MRI-driven turbulent transport: the role of dissipation, channel modes and their parasites. Astron. Astrophys. 516, 51.
de Lozar, A., Mellibovsky, F., Avila, M. & Hof, B. 2012 Edge state in pipe flow experiments. Phys. Rev. Lett. 108, 214502.
Lynden-Bell, D. & Pringle, J. E. 1974 The evolution of viscous discs and the origin of the nebular variables. Mon. Not. R. Astron. Soc. 168, 603.
Manneville, P. 2009 Spatiotemporal perspective on the decay of turbulence in wall-bounded flows. Phys. Rev. E 79, 025301.
Mellibovsky, F. & Eckhardt, B. 2011 Takens–Bogdanov bifurcation of travelling-wave solutions in pipe flow. J. Fluid Mech. 670, 96.
Mellibovsky, F. & Eckhardt, B. 2012 From travelling waves to mild chaos: a supercritical bifurcation cascade in pipe flow. J. Fluid Mech. 709, 149.
Mellibovsky, F., Meseguer, A., Schneider, T. M. & Eckhardt, B. 2009 Transition in localized pipe flow turbulence. Phys. Rev. Lett. 103, 054502.
Miesch, M. S., Gilman, P. A. & Dikpati, M. 2007 Nonlinear evolution of global magnetoshear instabilities in a three-dimensional thin-shell model of the solar tachocline. Astrophys. J. Supp. Ser. 168, 337.
Moehlis, J., Eckhardt, B. & Faisst, H. 2004a Fractal lifetimes in the transition to turbulence. Chaos 14, 11.
Moehlis, J., Faisst, H. & Eckhardt, B. 2004b A low-dimensional model for turbulent shear flows. New J. Phys. 6, 56.
Moehlis, J., Faisst, H. & Eckhardt, B. 2005 Periodic orbits and chaotic sets in a low-dimensional model for shear flows. SIAM J. Appl. Dyn. Syst. 4, 352.
Moehlis, J., Smith, T. R., Holmes, P. & Faisst, H. 2002 Models for turbulent plane Couette flow using the proper orthogonal decomposition. Phys. Fluids 14, 2493.
Moffatt, H. K. 1977 Magnetic Field Generation in Electrically Conducting Fluids. Cambridge University Press.
Monchaux, R., Berhanu, M., Aumaitre, S., Chiffaudel, A., Daviaud, F., Dubrulle, B., Ravelet, F., Fauve, S., Mordant, N., Petrelis, F., Bourgoin, M., Odier, P., Pinton, J. -F., Plihon, N. & Volk, R. 2009 The Von Kármán Sodium experiment: turbulent dynamical dynamos. Phys. Fluids 21, 035108.
Moore, D. R., Toomre, J., Knobloch, E. & Weiss, N. O. 1983 Period doubling and chaos in partial differential equations for thermosolutal convection. Nature 303, 663.
Moxey, D. & Barkley, D. 2010 Distinct large-scale turbulent-laminar states in transitional pipe flow. Proc. Natl Acad. Sci. 107 (18), 8091.
Nagata, M. 1986 Bifurcations in Couette flow between almost corotating cylinders. J. Fluid Mech. 169, 229.
Nagata, M. 1990 Three-dimensional finite-amplitude solutions in plane Couette flow: bifurcation from infinity. J. Fluid Mech. 217, 519.
Newhouse, S. E. 1979 The abundance of wild hyperbolic sets and nonsmooth stable sets for diffeomorphisms. Publ. Math. Inst. Hautes Études Sci. 50, 101.
Ogilvie, G. I. & Pringle, J. E. 1996 The non-axisymmetric instability of a cylindrical shear flow containing an azimuthal magnetic field. Mon. Not. R. Astron. Soc. 279, 152.
Oishi, J. S. & Mac Low, M.-M. 2011 Magnetorotational turbulence transports angular momentum in stratified disks with low magnetic Prandtl number but magnetic Reynolds number above a critical value. Astrophys. J. 740, 18.
Orr, W. M. 1907 The stability or instability of the steady motions of a perfect liquid and of a viscous liquid. Part I: a perfect liquid. Proc. R. Irish Acad. A 27, 9.
Ott, E. 2002 Chaos in Dynamical Systems. Cambridge University Press.
Palis, J. & Takens, F. 1993 Hyperbolicity and Sensitive Chaotic Dynamics at Homoclinic Bifurcations. Cambridge University Press.
Papaloizou, J. C. B. & Lin, D. N. C. 1995 Theory of accretion disks I: angular momentum transport processes. Annu. Rev. Astron. Astrophys. 33, 505.
Peixinho, J. & Mullin, T. 2006 Decay of turbulence in pipe flow. Phys. Rev. Lett. 96, 094501.
Pomeau, Y. 1986 Front motion, metastability and subcritical bifurcations in hydrodynamics. Physica D 23, 3.
Pringle, C. C. T., Duguet, Y. & Kerswell, R. R. 2009 Highly symmetric travelling waves in pipe flow. Phil. Trans. R. Soc. Lond. A 367, 457.
Pringle, C. C. T. & Kerswell, R. R. 2007 Asymmetric, helical, and mirror-symmetric travelling waves in pipe flow. Phys. Rev. Lett. 99, 074502.
Pringle, J. E. 1981 Accretion discs in astrophysics. Annu. Rev. Astron. Astrophys. 19, 137.
Pumir, A. 1996 Turbulence in homogeneous shear flows. Phys. Fluids 8, 3112.
Rempel, E. L., Lesur, G. & Proctor, M. R. E. 2010 Supertransient magnetohydrodynamic turbulence in Keplerian shear flows. Phys. Rev. Lett. 105, 044501.
Reynolds, O. 1883 An experimental investigation of the circumstances which determine whether the motion of water shall be direct of sinuous and of the law of resistance in parallel channels. Phil. Trans. R. Soc. Lond. 174, 935.
Rincon, F., Ogilvie, G. I. & Proctor, M. R. E. 2007 Self-sustaining nonlinear dynamo process in Keplerian shear flows. Phys. Rev. Lett. 98, 254502.
Rincon, F., Ogilvie, G. I., Proctor, M. R. E. & Cossu, C. 2008 Subcritical dynamos in shear flows. Astron. Nachr. 329, 750.
Robinson, C. 1983 Bifurcation to infinitely many sinks. Commun. Math. Phys. 90, 433.
Schmid, P. J. & Henningson, D. S. 2000 Stability and Transition in Shear Flows. Springer.
Schmiegel, A. 1997 Fractal stability border in plane couette flow. Phys. Rev. Lett. 79, 5250.
Schneider, T., Eckhardt, B. & Yorke, J. A. 2006 Edge of chaos in pipe flow. Chaos 16, 041103.
Schneider, T., Eckhardt, B. & Yorke, J. A. 2007a Turbulence transition and the edge of chaos in pipe flow. Phys. Rev. Lett. 99, 034502.
Schneider, T. M. & Eckhardt, B. 2008 Lifetime statistics in transitional pipe flow. Phys. Rev. E 78, 046310.
Schneider, T. M., Eckhardt, B. & Vollmer, J. 2007b Statistical analysis of coherent structures in transitional pipe flow. Phys. Rev. E 75, 066313.
Schneider, T. M., Gibson, J. F., Lagha, M., de Lillo, F. & Eckhardt, B. 2008 Laminar-turbulent boundary in plane Couette flow. Phys. Rev. E 78, 037301.
Simó, C. 1989 On the analytical and numerical approximation of invariant manifolds. In Les Méthodes Modernes de la Mécanique Céleste (Goutelas ’89) (ed. Benest, D. & Froeschlé, C.), p. 285. Editions Frontières.
Simon, J. B., Beckwith, K. & Armitage, P. J. 2012 Emergent mesoscale phenomena in magnetized accretion disc turbulence. Mon. Not. R. Astron. Soc. 422, 2685.
Simon, J. B., Hawley, J. F. & Beckwith, K. 2011 Resistivity-driven state changes in vertically stratified accretion disks. Astrophys. J. 730, 94.
Skufca, J. D., Yorke, J. A. & Eckhardt, B. 2006 Edge of chaos in a parallel shear flow. Phys. Rev. Lett. 96, 174101.
Smale, S. 1967 Differentiable dynamical systems. Bull. Am. Math. Soc. 73, 747.
Sparrow, C. 1982 The Lorenz Equations: Bifurcation, Chaos and Strange Attractors, Applied Mathathematical Science, vol. 41. Springer.
Spruit, H. C. 2002 Dynamo action by differential rotation in a stably stratified stellar interior. Astron. Astrophys. 381, 923.
Steenbeck, M., Krause, F. & Rädler, K.-H. 1966 Berechnung der mittleren LORENTZ-Feldstärke $ \overline{\boldsymbol{v}\times \boldsymbol{B}} $ für ein elektrisch leitendes Medium in turbulenter, durch CORIOLIS-Kräfte beeinflußter Bewegung. Z. Naturforsch. Teil A 21, 369.
Sterling, D., Dullin, H. R. & Meiss, J. D. 1999 Homoclinic bifurcations for the Hénon map. Physica D 134, 153.
Stone, J. M., Hawley, J. F., Gammie, C. F. & Balbus, S. A. 1996 Three-dimensional magnetohydrodynamical simulations of vertically stratified accretion disks. Astrophys. J. 463, 656.
Swift, J. W. & Wiesenfeld, K. 1984 Suppression of period doubling in symmetric systems. Phys. Rev. Lett. 52, 705.
Terquem, C. & Papaloizou, J. C. B. 1996 On the stability of an accretion disc containing a toroidal magnetic field. Mon. Not. R. Astron. Soc. 279, 767.
Tobias, S. M., Cattaneo, F. & Brummell, N. H. 2011 On the generation of organized magnetic fields. Astrophys. J. 728, 153.
Umurhan, O. M. & Regev, O. 2004 Hydrodynamic stability of rotationally supported flows: Linear and nonlinear 2D shearing box results. Astron. Astrophys. 427, 855.
van Veen, L. & Kawahara, G. 2011 Homoclinic tangle on the edge of shear turbulence. Phys. Rev. Lett. 107, 114501.
Velikhov, E. P. 1959 Stability of an ideally conducting liquid flowing between cylinders rotating in a magnetic field. Sov. Phys. JETP 36, 1398.
Viswanath, D. 2007 Recurrent motions within plane Couette turbulence. J. Fluid Mech. 580, 339.
Vollmer, J., Schneider, T. & Eckhardt, B. 2009 Basin boundary, edge of chaos and edge state in a two-dimensional model. New J. Phys. 11, 013040.
Waleffe, F. 1995a Hydrodynamic stability and turbulence: beyond transients to a self-sustaining process. Stud. Appl. Maths 95, 319.
Waleffe, F. 1995b Transition in shear flows. Nonlinear normality versus non-normal linearity. Phys. Fluids 7, 3060.
Waleffe, F. 1997 On a self-sustaining process in shear flows. Phys. Fluids 9, 883.
Waleffe, F. 1998 Three-dimensional coherent states in plane shear flows. Phys. Rev. Lett. 81, 4140.
Waleffe, F. 2001 Exact coherent structures in channel flow. J. Fluid Mech. 435, 93.
Waleffe, F. 2003 Homotopy of exact coherent structures in plane shear flows. Phys. Fluids 15, 1517.
Wang, J., Gibson, J. & Waleffe, F. 2007 Lower branch coherent states in shear flows: transition and control. Phys. Rev. Lett. 98, 204501.
Wedin, H. & Kerswell, R. R. 2004 Exact coherent structures in pipe flow: travelling wave solutions. J. Fluid Mech. 508, 333.
Willis, A. P., Cvitanović, P. & Avila, M. 2013 Revealing the state space of turbulent pipe flow by symmetry reduction. J. Fluid Mech. 721, 514.
Willis, A. P. & Kerswell, R. R. 2007 Critical behaviour in the relaminarization of localized turbulence in pipe flow. Phys. Rev. Lett. 98, 014501.
Willis, A. P. & Kerswell, R. R. 2009 Turbulent dynamics of pipe flow captured in a reduced model: puff relaminarization and localized ‘edge’ states. J. Fluid Mech. 619, 213.
Yorke, J. A. & Alligood, T. 1983 Period doubling cascades of attractors: a prerequisite for horseshoes. Bull. Am. Math. Soc. 9, 319.
Zel’dovich, Y. B., Ruzmaikin, A. A., Molchanov, S. A. & Sokoloff, D. D. 1984 Kinematic dynamo problem in a linear velocity field. J. Fluid Mech. 144, 1.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Related content

Powered by UNSILO

Global bifurcations to subcritical magnetorotational dynamo action in Keplerian shear flow

  • A. Riols (a1) (a2), F. Rincon (a1) (a2), C. Cossu (a3), G. Lesur (a4), P.-Y. Longaretti (a4), G. I. Ogilvie (a5) and J. Herault (a6)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.