References
Allen, M. D. & Raabe, O. G.
1982
Re-evaluation of Millikan oil drop data for the motion of small particles in air. J. Aero. Sci.
13 (6), 537–547.
Basset, A. B.
1888
A Treatise on Hydrodynamics. Cambridge University Press.
Bird, G. A.
1994
Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Claredon.
Chapman, S. & Cowling, T. G.
1970
The Mathematical Theory of Non-Uniform Gases, 3rd edn. Cambridge University Press.
Fairweather, G. & Karageorghis, A.
1998
The method of fundamental solutions for elliptic boundary value problems. Adv. Comput. Math.
9 (1–2), 69–95.
Goldberg, R.1954, The slow flow of a rarefied gas past a spherical obstacle, PhD thesis, New York University.
Grad, H.
1949
On the kinetic theory of rarefied gases. Commun. Pure Appl. Maths
2 (4), 331–407.
Gu, X. J. & Emerson, D. R.
2007
A computational strategy for the regularized 13 moment equations with enhanced wall-boundary conditions. J. Comput. Phys.
225 (1), 263–283.
Gu, X. J. & Emerson, D. R.
2009
A high-order moment approach for capturing non-equilibrium phenomena in the transition regime. J. Fluid Mech.
636, 177–216.
Gupta, V. K., Struchtrup, H. & Torrilhon, M.
2016
Regularized moment equations for binary gas mixtures: derivation and linear analysis. Phys. Fluids
28 (4), 042003.
Hancock, G. J.
1953
The self-propulsion of microscopic organisms through liquids. Proc. R. Soc. Lond. A
217, 96–121.
Karageorghis, A. & Fairweather, G.
1987
The method of fundamental-solutions for the numerical-solution of the biharmonic equation. J. Comput. Phys.
69 (2), 434–459.
Kupradze, V. & Aleksidze, M. A.
1964
The method of functional equations for the approximate solution of certain boundary value problems. Comput. Math. Math. Phys.
4 (4), 82–126.
Lisicki, M.2013, Four approaches to hydrodynamic Green’s functions – the Oseen tensors CoRR, arXiv:1312:6231.
Lockerby, D. A. & Reese, J. M.
2008
On the modelling of isothermal gas flows at the microscale. J. Fluid Mech.
604, 235–261.
Lockerby, D. A., Reese, J. M. & Gallis, M. A.
2005
The usefulness of higher-order constitutive relations for describing the Knudsen layer. Phys. Fluids
17 (10), 100609.
Lorentz, H. A.
1897
A general theorem concerning the motion of a viscous fluid and a few consequences derived from it. Verh. K. Akad. Wet. Amsterdam
5, 168–175.
Loyalka, S. K.
1971
Kinetic theory of thermal transpiration and mechanocaloric effect. 1. J. Chem. Phys.
55 (9), 4497–4503.
McDonald, J. G. & Groth, C. P. T.
2013
Towards realizable hyperbolic moment closures for viscous heat-conducting gas flows based on a maximum-entropy distribution. Contin. Mech. Thermodyn.
25 (5), 573–603.
Millikan, R. A.
1923
The general law of fall of a small spherical body through a gas, and its bearing upon the nature of molecular reflection from surfaces. Phys. Rev.
22, 1–23.
Mohammadzadeh, A., Rana, A. S. & Struchtrup, H.
2015
Thermal stress versus thermal transpiration: A competition in thermally driven cavity flows. Phys. Fluids
27 (11), 112001.
Myong, R. S.
2004
A generalized hydrodynamic computational model for rarefied and microscale diatomic gas flows. J. Comput. Phys.
195 (2), 655–676.
Naris, S. & Valougeorgis, D.
2005
The driven cavity flow over the whole range of the Knudsen number. Phys. Fluids
17 (9), 097106.
Pozrikidis, C.
1992
Boundary Integral and Singularity Methods for Linearized Viscous Flow. Cambridge University Press.
Rana, A. S. & Struchtrup, H.
2016
Thermodynamically admissible boundary conditions for the regularized 13 moment equations. Phys. Fluids
28 (2), 027105.
Rana, A., Torrilhon, M. & Struchtrup, H.
2013
A robust numerical method for the R13 equations of rarefied gas dynamics: Application to lid driven cavity. J. Comput. Phys.
236, 169–186.
Sherman, F. S.
1990
Viscous Flow. McGraw-Hill.
Sone, Y.
2002
Kinetic Theory and Fluid Dynamics. Birkhauser.
Sone, Y. & Aoki, K.
1977
Forces on a spherical particle in a slightly rarefied gas. In Proceedings of the Tenth International Symposium on Rarefied Gas Dynamics, pp. 417–433. AIAA.
Struchtrup, H.
2005
Macroscopic Transport Equations for Rarefied Gas Flows. Springer.
Struchtrup, H. & Taheri, P.
2011
Macroscopic transport models for rarefied gas flows: a brief review. IMA J. Appl. Maths.
76 (5), 672–697.
Struchtrup, H. & Torrilhon, M.
2003
Regularization of Grad’s 13 moment equations: Derivation and linear analysis. Phys. Fluids
15 (9), 2668–2680.
Struchtrup, H. & Torrilhon, M.
2013
Regularized 13 moment equations for hard sphere molecules: Linear bulk equations. Phys. Fluids
25 (5), 052001.
Taheri, P. & Struchtrup, H.
2010
An extended macroscopic transport model for rarefied gas flows in long capillaries with circular cross section. Phys. Fluids
22 (11), 112004.
Takata, S., Sone, Y. & Aoki, K.
1993
Numerical analysis of a uniform flow of a rarefied gas past a sphere on the basis of the Boltzmann equation for hard sphere molecules. Phys. Fluids A
5, 716–737.
Torrilhon, M.
2010
Slow gas microflow past a sphere: analytical solution based on moment equations. Phys. Fluids
22 (7), 072001.
Torrilhon, M.
2016
Modeling nonequilibrium gas flow based on moment equations. Annu. Rev. Fluid Mech.
48, 429–458.
Torrilhon, M. & Struchtrup, H.
2004
Regularized 13-moment equations: shock structure calculations and comparison to Burnett models. J. Fluid Mech.
513, 171–198.
Veerapaneni, S. K., Gueyffier, D., Zorin, D. & Biros, G.
2009
A boundary integral method for simulating the dynamics of inextensible vesicles suspended in a viscous fluid in 2D. J. Comput. Phys.
228 (7), 2334–2353.
Wu, L., Reese, J. M. & Zhang, Y.
2014
Solving the Boltzmann equation deterministically by the fast spectral method: application to gas microflows. J. Fluid Mech.
746, 53–84.
Ying, L., Biros, G. & Zorin, D.
2006
A high-order 3D boundary integral equation solver for elliptic PDEs in smooth domains. J. Comput. Phys.
219 (1), 247–275.
Young, D. L., Jane, S. J., Fan, C. M., Murugesan, K. & Tsai, C. C.
2006
The method of fundamental solutions for 2D and 3D stokes problems. J. Comput. Phys.
211 (1), 1–8.
Young, J. B.
2011
Thermophoresis of a spherical particle: reassessment, clarification, and new analysis. Aerosol Sci. Technol.
45 (8), 927–948.