Skip to main content Accessibility help

Frequency selection by feedback control in a turbulent shear flow

  • Vladimir Parezanović (a1) (a2), Laurent Cordier (a1), Andreas Spohn (a1), Thomas Duriez (a1) (a3), Bernd R. Noack (a1) (a4) (a5), Jean-Paul Bonnet (a1), Marc Segond (a6), Markus Abel (a7) (a8) and Steven L. Brunton (a9)...


Many previous studies have shown that the turbulent mixing layer under periodic forcing tends to adopt a lock-on state, where the major portion of the fluctuations in the flow are synchronized at the forcing frequency. The goal of this experimental study is to apply closed-loop control in order to provoke the lock-on state, using information from the flow itself. We aim to determine the range of frequencies for which the closed-loop control can establish the lock-on, and what mechanisms are contributing to the selection of a feedback frequency. In order to expand the solution space for optimal closed-loop control laws, we use the genetic programming control (GPC) framework. The best closed-loop control laws obtained by GPC are analysed along with the associated physical mechanisms in the mixing layer flow. The resulting closed-loop control significantly outperforms open-loop forcing in terms of robustness to changes in the free-stream velocities. In addition, the selection of feedback frequencies is not locked to the most amplified local mode, but rather a range of frequencies around it.


Corresponding author

Email address for correspondence:


Hide All
Aström, K. J. & Murray, R. M. 2010 Feedback Systems: An Introduction for Scientists and Engineers. Princeton University Press.
Baek, S. J. & Sung, H. J. 2000 Quasi-periodicity in the wake of a rotationally oscillating cylinder. J. Fluid Mech. 408, 275300.
Bagheri, S., Brandt, L. & Henningson, D. S. 2009 Input–output analysis, model reduction and control of the flat-plate boundary layer. J. Fluid Mech. 620, 263298.
Beyer, H.-G. & Sendhoff, B. 2007 Robust optimization – a comprehensive survey. Comput. Meth. Appl. Mech. Engng 196 (33–34), 31903218.
Bradshaw, P. 1971 An Introduction to Turbulence and its Measurement. Pergamon.
Brunton, S. L. & Noack, B. R. 2015 Closed-loop turbulence control: progress and challenges. Appl. Mech. Rev. 67 (5), 050801.
Burl, J. B. 1999 Linear Optimal Control: H 2 and H Methods. Addison-Wesley Publishing.
Buxton, O. R. H., de Kat, R. & Ganapathisubramani, B. 2013 The convection of large and intermediate scale fluctuations in a turbulent mixing layer. Phys. Fluids 25 (12), 125105.
Chang, W.-D. 2007 Nonlinear system identification and control using a real-coded genetic algorithm. Appl. Math. Model. 31 (3), 541550.
Cordier, L., Noack, B. R., Tissot, G., Lehnasch, G., Delville, J., Balajewicz, M., Daviller, G. & Niven, R. K. 2013 Identification strategies for model-based control. Exp. Fluids 54 (8), 121.
Delville, J.1995 La décomposition orthogonale aux valeurs propres et l’analyse de l’organisation tridimensionnelle des écoulements turbulents cisaillés libres. PhD thesis, Université de Poitiers.
Duriez, T., Parezanović, V., Laurentie, J.-C., Fourment, C., Delville, J., Bonnet, J.-P., Cordier, L., Noack, B. R., Segond, M., Abel, M. W. et al. 2014 Closed-loop control of experimental shear layers using machine learning (invited). In 7th AIAA Flow Control Conference, Atlanta, Georgia, USA, pp. 116. American Institute of Aeronautics and Astronautics (AIAA).
Fiedler, H. E. & Mensing, P. 1985 The plane turbulent shear layer with periodic excitation. J. Fluid Mech. 150 (1), 281309.
Fleming, P. J. & Purshouse, R. C. 2002 Evolutionary algorithms in control systems engineering: a survey. Control Engng. Pract. 10 (11), 12231241.
Gautier, N., Aider, J.-L., Duriez, T., Noack, B. R., Segond, M. & Abel, M. 2015 Closed-loop separation control using machine learning. J. Fluid Mech. 770, 442457.
Hervé, A., Sipp, D., Schmid, P. J. & Samuelides, M. 2012 A physics-based approach to flow control using system identification. J. Fluid Mech. 702, 2658.
Ho, C. M. & Huang, L. S. 1982 Subharmonics and vortex merging in mixing layers. J. Fluid Mech. 119, 443473.
Ho, C. M. & Huerre, P. 1984 Perturbed free shear layers. Annu. Rev. Fluid Mech. 16, 365424.
Ho, C. M. & Nosseir, N. S. 1981 Dynamics of an impinging jet. Part 1. The feedback phenomenon. J. Fluid Mech. 105, 119142.
King, R.(Ed.) 2010 Active Flow Control II, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 108. Springer.
Koza, J. R. 1992 Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press.
Lewis, M. A., Fagg, A. H. & Solidum, A. 1992 Genetic programming approach to the construction of a neural network for control of a walking robot. In IEEE International Conference on Robotics and Automation, vol. 3, pp. 26182623. IEEE.
Luke, S., Panait, L., Balan, G., Paus, S., Skolicki, Z., Kicinger, R., Popovici, E., Sullivan, K., Harrison, J., Bassett, J. et al. 1993 A Java-based Evolutionary Computation Research System.∼eclab/projects/ecj/.
Michalke, A. 1965 On spatially growing disturbances in an inviscid shear layer. J. Fluid Mech. 23, 521544.
Milano, M. & Koumoutsakos, P. 2002 A clustering genetic algorithm for cylinder drag optimization. J. Comput. Phys. 175, 79107.
Moore, D. W. & Saffman, P. G. 1975 The density of organized vortices in a turbulent mixing layer. J. Fluid. Mech. 69, 465473.
Morris, S. C. & Foss, J. F. 2003 Turbulent boundary layer to single-stream shear layer: the transition region. J. Fluid Mech. 494, 187221.
Murphy, K. P. 2012 Machine Learning: A Probabilistic Perspective. MIT Press.
Nordin, P. & Banzhaf, W. 1997 An on-line method to evolve behavior and to control a miniature robot in real time with genetic programming. Adapt. Behav. 5 (2), 107140.
Oster, D. & Wygnanski, I. 1982 The forced mixing layer between parallel streams. J. Fluid Mech. 123, 91130.
Parezanović, V., Laurentie, J.-C., Fourment, C., Delville, J., Bonnet, J.-P., Spohn, A., Duriez, T., Cordier, L., Noack, B. R., Abel, M. et al. 2014 Mixing layer manipulation experiment: from open-loop forcing to closed-loop machine learning control. Flow Turbul. Combust. 94 (1), 155173.
Pastoor, M., Henning, L., Noack, B. R., King, R. & Tadmor, G. 2008 Feedback shear layer control for bluff body drag reduction. J. Fluid Mech. 608, 161196.
Pinier, J. T., Ausseur, J. M., Glauser, M. N. & Higuchi, H. 2007 Proportional closed-loop feedback control of flow separation. AIAA J. 45 (1), 181190.
Rechenberg, I.(1971) Evolutionsstrategie: Optimierung technischer Systeme Nach Prinzipien der Biologischen Evolution. PhD thesis, Technical University of Berlin.
Rowley, C. W., Williams, D. R., Colonius, T., Murray, R. M. & Macmynowski, D. G. 2006 Linear models for control of cavity flow oscillations. J. Fluid Mech. 547, 317330.
Samimy, M., Debiasi, M., Caraballo, E., Serrani, A., Yuan, X., Little, J. & Myatt, J. H. 2007 Feedback control of subsonic cavity flows using reduced-order models. J. Fluid Mech. 579, 315346.
Schmidt, M. & Lipson, H. 2009 Distilling free-form natural laws from experimental data. Science 324 (5923), 8185.
Smits, G. & Kotanchek, M. 2005 Pareto-front exploitation in symbolic regression. In Genetic Programming Theory and Practice II, pp. 283299. Springer.
Wahde, M. 2008 Biologically Inspired Optimization Methods: An Introduction. WIT Press.
Wills, J. A. B. 1964 On convection velocities in turbulent shear flows. J. Fluid Mech. 20 (03), 417432.
Wiltse, J. M. & Glezer, A. 2011 The effect of closed-loop feedback control on scalar mixing in a plane shear layer. Exp. Fluids 51 (5), 12911314.
Winant, C. D. & Browand, F. K. 1974 Vortex pairing: the mechanism of turbulent mixing-layer growth at moderate Reynolds number. J. Fluid Mech. 63, 237255.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed