Skip to main content Accessibility help
×
Home

Free motion of a body in a boundary layer or channel flow

  • Frank T. Smith (a1)

Abstract

Coupling is considered between fluid flow and a freely moving body shorter than the development length in an oncoming boundary layer or channel flow but longer than the flow thickness. The body lies within the core of the flow. The coupling occurs between the inviscid-dominated displacement and the viscous–inviscid pressure, the latter acting to move the body. This interaction can be unstable. It is found however that three factors serve to stabilise the interaction as each one alters the decisive balance of angular momentum. One is a 10 % shift forward in the position of the centre of mass. The second is a degree of flexibility in the body shape by means of its response to the induced pressure force. Third is a slight streamwise movement of the body which is sufficient to modify the viscous–inviscid pressure response and again produce stabilisation. The effects are largely independent of the lateral position of the body.

Copyright

Corresponding author

Email address for correspondence: f.smith@ucl.ac.uk

References

Hide All
Carpenter, P. W. & Garrad, A. D. 1985 The hydrodynamic stability of flow over Kramer-type compliant surfaces. Part I. Tollmien–Schlichting instabilities. J. Fluid Mech. 165, 465510.
Cox, R. G. & Mason, S. G. 1971 Suspended particles in fluid flow through tubes. Annu. Rev. Fluid Mech. 3, 291316.
Einav, S. & Lee, S. L. 1973 Particles migration in laminar boundary layer flow. Intl J. Multiphase Flow 1, 7388.
Frank, M., Anderson, D., Weeks, E. R. & Morris, J. F. 2003 Particle migration in pressure-driven flow of a Brownian suspension. J. Fluid Mech. 493, 363378.
Gavze, E. & Shapiro, M. 1997 Particles in a shear flow near a solid wall: effect of nonsphericity on forces and velocities. Intl J. Multiphase Flow 23, 155182.
Gent, R. W., Dart, N. P. & Cansdale, J. T. 2000 Aircraft icing. Phil. Trans. R. Soc. Lond. A 358, 28732911.
Guneratne, J. C. & Pedley, T. J. 2006 High-Reynolds-number steady flow in a collapsible channel. J. Fluid Mech. 569, 151184.
Hall, G. R. 1964 On the mechanics of transition produced by particles passing through an initially laminar boundary layer and estimated effect on the performance of X-21 aircraft. Northrop Corp. N79-70656.
Kishori, N. & Gu, S. 2010 Wall effects on flow and drag phenomena of spheroid particles at moderate Reynolds numbers. Ind. Engng Chem. Res. 49, 94869495.
Loisel, V., Abbas, M., Masbernat, O. & Climen, E. 2013 The effect of neutrally buoyant finite-size particles on channel flows in the laminar-turbulent transition regime. Phys. Fluids 25 (12), 123304.
Loth, E. & Dorgan, A. J. 2009 An equation of motion for particles of finite Reynolds number and size. Environ. Fluid Mech. 9, 187206.
Muller, K., Fedosov, D. A. & Gompper, G. 2014 Margination of micro- and nano-particles in blood flow and its effects on drug delivery. Sci. Rep. 4, 4871.
Petrie, H. L., Morris, P. J., Bajwa, A. R. & Vincent, D. C.1993 Transition induced by fixed and freely convecting spherical particles in laminar boundary layers, Tech. Rep. TR93-07, Pennsylvania State University, USA.
Poesio, P., Ooms, G., Cate, A. T. & Hunt, J. C. R. 2006 Interaction and collisions between particles in a linear shear flow near a wall at low Reynolds number. J. Fluid Mech. 555, 113130.
Portela, L. M., Cota, P. & Oliemans, R. V. A. 2002 Numerical study of the near-wall behaviour of particles in turbulent pipe flows. Powder Technol. 125, 149157.
Pruessner, L. & Smith, F. T. 2015 Enhanced effects from tiny flexible in-wall blips and shear flow. J. Fluid Mech. 772, 1641.
Purvis, R. & Smith, F. T. 2016 Improving aircraft safety in icing conditions. In UK Success Stories in Industrial Mathematics (ed. Aston, P. A., Mulholland, A. J. & Tate, K. M. M.), pp. 145154. Springer.
Schmidt, C. & Young, T. M. 2009 The impact of freely suspended particles on laminar boundary layers. In AIAA Aerosp. Sci. Mtg 5–8 Jan, Orlando, Florida, USA, AIAA.
Schmidt, C., Young, T. & Benard, E. 2010 The effect of a particle travelling through a laminar boundary layer on transition. IUTAM 09 18, 561564.
Semwogerere, D. & Weeks, E. R. 2008 Shear-induced particle migration in binary colloidal suspensions. Phys. Fluids 20 (4), 043306.
Sinclair, M., Lee, J., Schuster, A., Chiribi, A., Van Den Wijngaard, J., Van Horssen, P., Siebes, M., Spaan, J. A. E., Nagel, E. & Smith, N. P. 2015 Microsphere skimming in the porcine coronary arteries: implications for flow quantification. Microvasc. Res. 100, 5970.
Smith, F. T. 1973 Laminar flow over a small hump on a flat plate. J. Fluid Mech. 57, 803824.
Smith, F. T. 1976 Flow through constricted or dilated pipes and channels: part 2. Q. J. Mech. Appl. Maths 29, 365376.
Smith, F. T. 1977 Upstream interactions in channel flows. J. Fluid Mech. 79, 631655.
Smith, F. T. 1984 Concerning upstream influence in separating boundary layers and downstream influence in channel flow. Q. J. Mech. Appl. Maths 37, 389399.
Smith, F. T. & Daniels, P. G. 1981 Removal of Goldstein’s singularity at separation in flow past obstacles in wall layers. J. Fluid Mech. 110, 137.
Smith, F. T. & Jones, M. A. 2000 One-to-few and one-to-many branching tube flows. J. Fluid Mech. 423, 131.
Smith, F. T. & Ellis, A. S. 2010 On interaction between falling bodies and the surrounding fluid. Mathematika 56, 140168.
Smith, F. T. & Johnson, E. R. 2016 Movement of a finite body in channel flow. Proc. R. Soc. Lond. A 472 (2191), 20160164.
Stewartson, K. 1970 On laminar boundary layers near corners. Q. J. Mech. Appl. Maths 23, 137152.
Sychev, V. V. 1972 Concerning laminar separation. Izv. Akad. Nauk. SSSR, Mekh. Zhidk Gaza 3, 4759.
Wang, J. & Levy, E. K. 2006 Particle behavior in the turbulent boundary layer of a dilute gas-particle flow past a flat plate. Exp. Therm. Fluid Sci. 30, 473483.
White, A. H. & Smith, F. T. 2012 Wall shape effects on multiphase flow in channels. Theor. Comput. Fluid Dyn. 26, 339360.
Wilson, P. L. & Smith, F. T. 2013 Body-rock or liftoff in flow. J. Fluid Mech. 735, 91119.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Free motion of a body in a boundary layer or channel flow

  • Frank T. Smith (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed