Skip to main content Accessibility help

Fractal characteristics of turbulent–non-turbulent interface in supersonic turbulent boundary layers

  • Yi Zhuang (a1) (a2), Huijun Tan (a1) (a2), Hexia Huang (a1) (a2), Yazhou Liu (a1) (a2) and Yue Zhang (a1) (a2)...


The turbulent–non-turbulent interface (TNTI) of supersonic turbulent boundary layers is a fundamental but relatively unexplored physics problem. In this study, we present experimental results from fractal analysis on the TNTI of supersonic turbulent boundary layers, and test the applicability of the additive law for these flows. By applying the nanoparticle-tracer planar laser scattering (NPLS) technique in a supersonic wind tunnel, we obtain data covering nearly three decades in scale. The box-counting results indicate that the TNTI of supersonic turbulent boundary layers is a self-similar fractal with a fractal dimension of 2.31. By comparing data sets acquired from two orthogonal planes, we find that the scaling exponent does not depend on direction, consistent with the validity of the additive law for the TNTI of turbulent boundary layers in a scale range with the large-scale limit not exceeding approximately $0.05\unicode[STIX]{x1D6FF}$ .


Corresponding author

Email address for correspondence:


Hide All
Bo, W., Liu, W. D., Zhao, Y. X., Fan, X. Q. & Chao, W. 2012 Experimental investigation of the micro-ramp based shock wave and turbulent boundary layer interaction control. Phys. Fluids 24 (5), 11661175.
Borrell, G. & Jiménez, J. 2016 Properties of the turbulent/non-turbulent interface in boundary layers. J. Fluid Mech. 801 (1), 554596.
Catrakis, H. J. 2000 Distribution of scales in turbulence. Phys. Rev. E 62 (1 Pt A), 564577.
Constantin, P., Procaccia, I. & Sreenivasan, K. R. 1991 Fractal geometry of isoscalar surfaces in turbulence: theory and experiments. Phys. Rev. Lett. 67 (13), 17391742.
Corrsin, S. & Kistler, A. L.1955 The free-stream boundaries of turbulent flows. Naca Tech. Rep. TN-1244.
Gang, D. D., Yi, S. H., Wu, Y. & Zhu, Y. Z. 2014 Supersonic flow over circular protuberances on a flat plate. J. Vis. 17 (4), 307317.
Gouldin, F. C. 1987 An application of fractals to modeling premixed turbulent flames. Combust. Flame 68 (3), 249266.
Liebovitch, L. S. & Toth, T. 1989 A fast algorithm to determine fractal dimensions by box counting. Phys. Lett. A 141 (8–9), 386390.
Lovejoy, S. 1982 Area-perimeter relation for rain and cloud areas. Science 216 (4542), 185187.
Mandelbrot, B. B. & Pignoni, R. 1983 The Fractal Geometry of Nature, vol. 173. WH Freeman.
Mathew, J. & Basu, A. J. 2002 Some characteristics of entrainment at a cylindrical turbulence boundary. Phys. Fluids 14 (7), 20652072.
Meneveau, C. & Sreenivasan, K. R. 1990 Interface dimension in intermittent turbulence. Phys. Rev. A 41 (4), 22462248.
North, G. L. & Santavicca, D. A. 1990 The fractal nature of premixed turbulent flames. Combust. Sci. Technol. 72 (4–6), 215232.
Prasad, R. R. & Sreenivasan, K. R. 1989 Scalar interfaces in digital images of turbulent flows. Exp. Fluids 7 (4), 259264.
Prasad, R. R. & Sreenivasan, K. R. 1990 The measurement and interpretation of fractal dimensions of the scalar interface in turbulent flows. Phys. Fluids A 2 (5), 792807.
Praskovsky, A. A., Dabberdt, W. F., Praskovskaya, E. A., Hoydysh, W. G. & Holynskyj, O. 1996 Fractal geometry of isoconcentration surfaces in a smoke plume. J. Atmos. Sci. 53 (1), 521.
Rys, F. S. & Waldvogel, A. 1986 Fractal shape of hail clouds. Phys. Rev. Lett. 56 (7), 784787.
Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. 2012 Nih image to imagej: 25 years of image analysis. Nat. Methods 9 (7), 671675.
da Silva, C. B., Hunt, J. C. R., Eames, I. & Westerweel, J. 2014 Interfacial layers between regions of different turbulence intensity. Annu. Rev. Fluid Mech. 46 (1), 567590.
da Silva, C. B. & dos Reis, R. J. N. 2011 The role of coherent vortices near the turbulent/non-turbulent interface in a planar jet. Phil. Trans. R. Soc. Lond. A 369 (1937), 738753.
da Silva, C. B. & Taveira, R. R. 2010 The thickness of the turbulent/nonturbulent interface is equal to the radius of the large vorticity structures near the edge of the shear layer. Phys. Fluids 22 (12), 121702.
de Silva, C. M., Philip, J., Chauhan, K., Meneveau, C. & Marusic, I. 2013 Multiscale geometry and scaling of the turbulent–nonturbulent interface in high Reynolds number boundary layers. Phys. Rev. Lett. 111 (4), 044501.
Sreenivasan, K. R. 1991 Fractals and multifractals in fluid turbulence. Annu. Rev. Fluid Mech. 23 (1), 539604.
Sreenivasan, K. R. & Meneveau, C. 1986 The fractal facets of turbulence. J. Fluid Mech. 173, 357386.
Sreenivasan, K. R., Ramshankar, R. & Meneveau, C. 1989 Mixing, entrainment and fractal dimensions of surfaces in turbulent flows. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 421, pp. 79108. The Royal Society.
Tao, Y., Fan, X. Q. & Zhao, Y. L. 2014 Viscous effects of shock reflection hysteresis in steady supersonic flows. J. Fluid Mech. 759, 134148.
Wang, D. P., Xia, Z. X., Zhao, Y. X. & Wang, Q. H. 2013a Vortical structures of supersonic flow over a delta-wing on a flat plate. Appl. Phys. Lett. 102 (6), 061911.
Wang, Q. C. & Wang, Z. G. 2016 Structural characteristics of the supersonic turbulent boundary layer subjected to concave curvature. Appl. Phys. Lett. 108 (11), 114102.
Wang, Q. C., Wang, Z. G., Lei, J. & Feng, J. H. 2013b Characteristics of mixing enhanced by streamwise vortices in supersonic flow. Appl. Phys. Lett. 103 (14), 453477.
Westerweel, J., Fukushima, C., Pedersen, J. M. & Hunt, J. C. R. 2005 Mechanics of the turbulent–nonturbulent interface of a jet. Phys. Rev. Lett. 95 (17), 174501.
Westerweel, J., Fukushima, C., Pedersen, J. M. & Hunt, J. C. R. 2009 Momentum and scalar transport at the turbulent/non-turbulent interface of a jet. J. Fluid Mech. 631 (631), 199230.
Zhao, Y. X., Yi, S. H., Tian, L. F. & Cheng, Z. Y. 2009 Supersonic flow imaging via nanoparticles. Sci. China Technol. Sci. 52 (12), 36403648.
Zhuang, Y., Tan, H. J., Liu, Y. Z., Zhang, Y. C. & Ling, Y. 2017 High resolution visualization of Görtler-like vortices in supersonic compression ramp flow. J. Vis. 20 (3), 505508.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed