Skip to main content Accessibility help
×
×
Home

Formation–breakdown cycle of turbulent jets in a rotating fluid

  • I. U. Atthanayake (a1), P. Denissenko (a1), Y. M. Chung (a1) and P. J. Thomas (a1)

Abstract

Results of comprehensive particle image velocimetry measurements investigating the dynamics of turbulent jets in a rotating fluid are presented. It is observed that background system rotation induces a time-periodic formation–breakdown cycle of the jets. The flow dynamics associated with this process is studied in detail. It is found that the frequency of the cycle increases linearly with the background rotation rate. The data show that the onset of the breakdown phase and of the reformation phase of the cycle can be characterized in terms of a local Rossby number employing an internal velocity and a length scale of the jet. The critical values for this local Rossby number, for onset of breakdown and reformation, scale linearly with a global Rossby number based on the flow conditions at the source. The analysis of the experimental data suggests centrifugal instability as the potential origin of the formation–breakdown cycle.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Formation–breakdown cycle of turbulent jets in a rotating fluid
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Formation–breakdown cycle of turbulent jets in a rotating fluid
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Formation–breakdown cycle of turbulent jets in a rotating fluid
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Email address for correspondence: P.J.Thomas@warwick.ac.uk

References

Hide All
Ayotte, B. A. & Fernando, H. J. S. 1994 The motion of a turbulent thermal in the presence of background rotation. J. Atmos. Sci. 51 (13), 19891994.10.1175/1520-0469(1994)051<1989:TMOATT>2.0.CO;2
Barcilon, A. 1967 A theoretical and experimental model for dust devils. J. Atmos. Sci. 24, 453466.10.1175/1520-0469(1967)024<0453:ATAEMF>2.0.CO;2
Billant, P., Chomaz, J. M. & Huerre, P. 1998 Experimental study of vortex breakdown in swirling jets. J. Fluid Mech. 376, 183219.
Bush, J. W. M. & Woods, A. W. 1998 Experiments on buoyant plumes in a rotating channel. Geophys. Astrophys. Fluid Dyn. 89 (1–2), 122.10.1080/03091929808213646
Deremble, B. 2016 Convective plumes in rotating systems. J. Fluid Mech. 799, 2755.10.1017/jfm.2016.348
Elrick, J. R. 1979 Interaction between a discrete downdraft and a rotating environment. J. Atmos. Sci. 36 (2), 306312.10.1175/1520-0469(1979)036<0306:IBADDA>2.0.CO;2
Etling, D. & Fernando, H. J. S. 1993 On the influence of background rotation on turbulent jets. In Proceedings of the NATO Advanced Research Workshop on Recent Research Advances in the Fluid Mechanics of Turbulent Jets and Plumes (ed. Davies, P. A. & Neves, M. J. V.), NATO ASI Series E: Applied Sciences, vol. 255, pp. 401411. Viana Do Castelo.
Ezzamel, A., Salizzoni, P. & Hunt, G. R. 2015 Dynamical variability of axisymmetric buoyant plumes. J. Fluid Mech. 765, 576611.10.1017/jfm.2014.694
Faler, J. H. & Leibovich, S. 1977 Disrupted states of vortex flow and vortex breakdown. J. Fluid Mech. 20, 13851400.
Fernando, H. J. S., Chen, R.-R. & Ayotte, B. A. 1998 Development of a point plume in the presence of background rotation. Phys. Fluids 10, 23692383.
Fernando, H. J. S. & Ching, C. Y. 1993 Effects of background rotation on turbulent line plumes. J. Phys. Oceanogr. 23, 21252129.10.1175/1520-0485(1993)023<2125:EOBROT>2.0.CO;2
Frank, D., Landel, J. R., Dalziel, S. B. & Linden, P. F. 2017 Anticyclonic precession of a plume in a rotating environment. Geophys. Res. Lett. 44, 94009407.10.1002/2017GL074191
Gallaire, F. & Chomaz, J.-M. 2003 Instability mechanisms in swirling flow. Phys. Fluids 15, 26222639.
Graftieaux, L., Michard, M. & Grosjean, N. 2001 Combining PIV, POD and vortex identification algorithms for the study of unsteady turbulent swirling jets. Meas. Sci. Technol. 12 (3), 14221429.
Ho, C.-M. & Huerre, P. 1984 Perturbed free shear layers. Annu. Rev. Fluid Mech. 16, 365424.10.1146/annurev.fl.16.010184.002053
Hussein, H. J., Capp, S. P. & George, W. K. 1994 Velocity measurements in a high-Reynolds-number, momentum-conserving, axisymmetric, turbulent jet. J. Fluid Mech. 258, 3175.10.1017/S002211209400323X
Joliffe, I. T. 2002 Principal Component Analysis, 2nd edn. Springer.
Kloosterziel, R. C. & van Heijst, G. J. F. 1991 An experimental study of unstable barotropic vortices in a rotating fluid. J. Fluid Mech. 223, 124.
Lawrie, A. G. W., Duran, M., Scott, J. F., Godeferd, F., Flor, J. B., Cambon, C. & Daniaila, L. 2011 The axisymmetric jet in a rotating reference frame. J. Phys.: Conf. Ser. 318, 032048.
Leibovich, S. & Stewartson, K. 1983 A sufficient condition for the instability of columnar vortices. J. Fluid Mech. 126, 335356.10.1017/S0022112083000191
Liang, H. & Maxworthy, T. 2005 An experimental investigation of swirling jets. J. Fluid Mech. 525, 115159.
List, E. J. 1982 Turbulent jets and plumes. Annu. Rev. Fluid Mech. 14, 189212.10.1146/annurev.fl.14.010182.001201
Lucca-Negro, O. & O’Doherty, T. 2000 Vortex breakdown: a review. Prog. Energy Combust. Sci. 27, 431481.10.1016/S0360-1285(00)00022-8
Lumley, J. L. 1967 The structure of inhomogeneous turbulence. In Atmospheric Turbulence and Wave Propagation (ed. Yaglom, A. M. & Tatarski, V. I.), pp. 166178. Nauka.
Michalke, A. 1984 Survey on jet instability theory. Prog. Aerosp. Sci. 21, 159199.
Morton, B. R., Taylor, G. I. & Turner, J. S. 1956 Turbulent gravitational convection from maintained and instantaneous sources. Proc. R. Soc. Lond. A 234, 123.
Nagarathinam, D., Sameen, A. & Mathur, M. 2015 Centrifugal instability in non-axisymmetric vortices. J. Fluid Mech. 769, 2645.
Niino, H. 1978 Turbulent jet in a rotating fluid. J. Met. Soc. Japan 56, 527547.
Niino, H. 1980 Evolutions of a laminar jet in a homogeneous rotating fluid: a linear theory. J. Met. Soc. Japan 58, 3351.
Panchapakesan, N. R. & Lumley, J. L. 1993 Turbulence measurements in axisymmetric jets of air and helium. Part 1. Air jet. J. Fluid Mech. 246, 197223.
Papanicolaou, P. N. & List, E. J. 1988 Investigations of round vertical turbulent buoyant jets. J. Fluid Mech. 195, 341391.
Patte-Rouland, B., Lalizel, G., Moreau, J. & Rouland, E. 2001 Flow analysis of an annular jet by particle image velocimetry and proper orthogonal decomosition. Meas. Sci. Technol. 12 (9), 14041412.
Reynolds, W. C., Parekh, D. E., Juvet, P. J. D. & Lee, M. J. D. 2003 Bifurcating and blooming jets. Annu. Rev. Fluid Mech. 35 (4), 295315.10.1146/annurev.fluid.35.101101.161128
Scorer, R. S. 1957 Experiments on convection of isolated masses of buoyant fluid. J. Fluid Mech. 2, 583594.10.1017/S0022112057000397
Shabbir, A. & George, W. K. 1994 Experiments on a round turbulent jet. J. Fluid Mech. 275, 132.
Tomàs, A. F., Poje, A. C., Özgökmen, T. M. & Devar, W. K. 2016 Effects of rotation on turbulent buoyant plumes in stratified environments. J. Geophys. Res. 121, 53975417.
Turner, J. S. 1962 The starting plume in natural surroundings. J. Fluid Mech. 13, 356368.10.1017/S0022112062000762
Vanierschot, M., Dyck, K. V. & den Bulck, E. V. 2014 Symmetry breaking and vortex precession in low-swirling annular jets. Phys. Fluids 26, 105110.10.1063/1.4898347
Wang, H. & Law, A. W.-K. 2002 Second-order integral model for a round turbulent jet. J. Fluid Mech. 459, 397428.
Wilkins, E. M., Sasaki, Y. Jr., Friday, E. W., McCarthy, J. & McIntyre, J. R. 1969 Properties of simulated thermals in a rotating fluid. J. Geophys. Res. 74, 44724486.
Woods, A. W. 2010 Turbulent plumes in nature. Annu. Rev. Fluid Mech. 42, 391412.10.1146/annurev-fluid-121108-145430
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Type Description Title
VIDEO
Movie

Atthanayake et al. supplementary movie
Fluorescein visualisation of the stem of a jet.

 Video (11.0 MB)
11.0 MB
PDF
Supplementary material

Atthanayake et al. supplementary material
Supplementary page to figure 1

 PDF (178 KB)
178 KB
PDF
Supplementary material

Atthanayake et al. supplementary material
Supplementary page to figure 24(d)

 PDF (306 KB)
306 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed