Skip to main content Accessibility help

Fluid particle dynamics and the non-local origin of the Reynolds shear stress

  • Peter S. Bernard (a1) and Martin A. Erinin (a1)


The causative factors leading to the Reynolds shear stress distribution in turbulent channel flow are analysed via a backward particle path analysis. It is found that the classical displacement transport mechanism, by which changes in the mean velocity field over a mixing time correlate with the wall-normal velocity, is the dominant source of Reynolds shear stress. Approximately 20 % of channel flow at any given time contains fluid motions that contribute to displacement transport. Much rarer events provide a small but non-negligible contribution to the Reynolds shear stress due to fluid particle accelerations and long-lived correlations deriving from structural features of the near-wall flow. The Reynolds shear stress in channel flow is shown to be a non-local phenomenon that is not conducive to description via a local model and particularly one depending directly on the local mean velocity gradient.


Corresponding author

Email address for correspondence:


Hide All
Araya, G. & Castillo, L. 2012 DNS of turbulent thermal boundary layers up to Re 𝜃 = 2300. Intl J. Heat Mass Transfer 55, 40034019.
Bernard, P. S. 2013 Vortex dynamics in transitional and turbulent boundary layers. AIAA J. 51, 18281842.
Bernard, P. S. & Handler, R. A. 1990 Reynolds stress and the physics of turbulent momentum transport. J. Fluid Mech. 220, 99124.
Bernard, P. S., Thomas, J. M. & Handler, R. A. 1993 Vortex dynamics and the production of Reynolds stress. J. Fluid Mech. 253, 385419.
Bernard, P. S. & Wallace, J. M. 2002 Turbulent Flow: Analysis, Measurement and Prediction. Wiley.
Boudjemadi, R., Maupu, V., Laurence, D. & Qur, P. L. 1997 Budgets of turbulent stresses and fluxes in a vertical slot natural convection flow at Rayleigh Ra = 105 and 5. 4 105 . Intl J. Heat Fluid Flow 18, 7079.
Corrsin, S. 1974 Limitations of gradient transport models in random walks and turbulence. Adv. Geophys. 18A, 2560.
Dimitropoulos, C. D., Sureshkumar, R., Beris, A. N. & Handler, R. A. 2001 Budgets of Reynolds stress, kinetic energy and streamwise enstrophy in viscoelastic turbulent channel flow. Phys. Fluids 13, 10161027.
Egolf, P. W. 1994 Difference-quotient turbulence model: a generalization of Prandtl’s mixing-length theory. Phys. Rev. E 49, 12601268.
Egolf, P. W. 2009 Lévy statistics and beta model: a new solution of ‘wall’ turbulence with a critical phenomenon. Intl J. Refrig. 32, 18151836.
Egolf, P. W. & Weiss, D. A. 1998 Difference-quotient turbulence model: the axisymmetric isothermal jet. Phys. Rev. E 58, 459469.
Gatski, T. B. & Speziale, C. G. 1993 On explicit algebraic stress models for complex turbulent flows. J. Fluid Mech. 254, 5978.
Graham, J., Kanov, K., Yang, X. I. A., Lee, M., Malaya, N., Lalescu, C. C., Burns, R., Eyink, G., Szalay, A., Moser, R. D. & Meneveau, C. 2016 A web services accessible database of turbulent channel flow and its use for testing a new integral wall model for LES. J. Turbul. 17, 181215.
Hamba, F. 2005 Nonlocal analysis of the Reynolds stress in turbulent shear flow. Phys. Fluids 17, 115102.
Hamba, F. 2013 Exact transport equation for local eddy viscosity in turbulent shear flow. Phys. Fluids 25, 085102.
Handler, R. A., Bernard, P. S., Rovelstad, A. & Swearingen, J. 1992 On the role of accelerating particles in the generation of Reynolds stress. Phys. Fluids A 4, 13171319.
Jones, W. P. & Launder, B. E. 1972 The prediction of laminarization with a two-equation model of turbulence. Intl J. Heat Mass Transfer 15, 301314.
Kays, W. M. & Crawford, M. E. 1993 Convective Heat and Mass Transfer, 3rd edn. McGraw-Hill.
Lesieur, M. & Métais, O. 1996 New trends in large-eddy simulations of turbulence. Annu. Rev. Fluid Mech. 28, 4582.
Li, Y., Perlman, E., Wan, M., Yang, Y., Meneveau, C., Burns, R., Chen, S., Szalay, A. & Eyink, G. 2008 A public turbulence database cluster and applications to study Lagrangian evolution of velocity increments in turbulence. J. Turbul. 9, 129.
Mansour, N. N., Kim, J. & Moin, P. 1988 Reynolds-stress and dissipation-rate budgets in a turbulent channel flow. J. Fluid Mech. 194, 1544.
Massey, F. J. 1951 The Kolmogorov–Smirnov test for goodness of fit. J. Am. Stat. Assoc. 46, 6878.
Menter, F. R. 1994 Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 8, 15981605.
Perlman, E., Burns, R., Li, Y. & Meneveau, C. 2007 Data exploration of turbulence simulations using a database cluster. In Proceedings of the 2007 ACM/IEEE Conference on Supercomputing, pp. 111. ACM.
Perry, A. E. & Chong, M. S. 1982 On the mechanism of wall turbulence. J. Fluid Mech. 119, 173217.
Prandtl, L. 1925 Bericht über Untersuchungen zur ausgebildeten Turbulenz. Z. Angew. Math. Mech. 5, 136139.
Prandtl, L. 1942 Bemerkungen zur Theorie der freien Turbulenz. Z. Angew. Math. Mech. 22, 241243.
Sagaut, P. 2006 Large Eddy Simulation for Incompressible Flows, 3rd edn. Springer.
Schmitt, F. G. 2007 About Boussinesq’s turbulent viscosity hypothesis: historical remarks and a direct evaluation of its validity. C. R. Mécanique 335, 617627.
Spalart, P. R. & Allmaras, S. R. 1994 A one-equation turbulence model for aerodynamic flows. Rech. Aerosp. 1, 521.
Speziale, C. G. 1987 On nonlinear kl and k–𝜖 models of turbulence. J. Fluid Mech. 178, 459475.
Taylor, G. I. 1932 The transport of vorticity and heat through fluids in turbulent motion. Proc. R. Soc. Lond. A 135, 685705.
Toschi, F. & Bodenschatz, E. 2009 Lagrangian properties of particles in turbulence. Annu. Rev. Fluid Mech. 41, 375404.
Wilcox, D. C. 2008 Formulation of the k–𝜔 turbulence model revisited. AIAA J. 46, 28232838.
Wu, X. & Moin, P. 2009 Direct numerical simulation of turbulence in a nominally zero-pressure-gradient flat-plate boundary layer. J. Fluid. Mech. 630, 541.
Yoshizawa, A. 1984 Statistical analysis of the deviation of the Reynolds stress from its eddy-viscosity representation. Phys. Fluids 27, 13771387.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Fluid particle dynamics and the non-local origin of the Reynolds shear stress

  • Peter S. Bernard (a1) and Martin A. Erinin (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed