Skip to main content Accessibility help

Fluid deformation in random steady three-dimensional flow

  • Daniel R. Lester (a1), Marco Dentz (a2), Tanguy Le Borgne (a3) and Felipe P. J. de Barros (a4)


The deformation of elementary fluid volumes by velocity gradients is a key process for scalar mixing, chemical reactions and biological processes in flows. Whilst fluid deformation in unsteady, turbulent flow has gained much attention over the past half-century, deformation in steady random flows with complex structure – such as flow through heterogeneous porous media – has received significantly less attention. In contrast to turbulent flow, the steady nature of these flows constrains fluid deformation to be anisotropic with respect to the fluid velocity, with significant implications for e.g. longitudinal and transverse mixing and dispersion. In this study we derive an ab initio coupled continuous-time random walk (CTRW) model of fluid deformation in random steady three-dimensional flow that is based upon a streamline coordinate transform which renders the velocity gradient and fluid deformation tensors upper triangular. We apply this coupled CTRW model to several model flows and find that these exhibit a remarkably simple deformation structure in the streamline coordinate frame, facilitating solution of the stochastic deformation tensor components. These results show that the evolution of longitudinal and transverse fluid deformation for chaotic flows is governed by both the Lyapunov exponent and power-law exponent of the velocity probability distribution function at small velocities, whereas algebraic deformation in non-chaotic flows arises from the intermittency of shear events following similar dynamics as that for steady two-dimensional flow.


Corresponding author

Email address for correspondence:


Hide All
Adachi, K. 1983 Calculation of strain histories in Protean coordinate systems. Rheol. Acta 22 (4), 326335.
Adachi, K. 1986 A note on the calculation of strain histories in orthogonal streamline coordinate systems. Rheol. Acta 25 (6), 555563.
Arnol’d, V. I. 1965 Sur la topologie des écoulements stationnaires des fluides parfaits. C. R. Acad. Sci. Paris 261, 312314.
Arnol’d, V. I. 1966 On the topology of three-dimensional steady flows of an ideal fluid. J. Appl. Math. Mech. 30, 223226.
Ashurst, W. T., Kerstein, A. R., Kerr, R. M. & Gibson, C. H. 1987 Alignment of vorticity and scalar gradient with strain rate in simulated Navier–Stokes turbulence. Phys. Fluids 30 (8), 23432353.
Attinger, S., Dentz, M. & Kinzelbach, W. 2004 Exact transverse macro dispersion coefficients for transport in heterogeneous porous media. Stoch. Environ. Res. Risk Assess. 18 (1), 915.
de Barros, F. P. J., Dentz, M., Koch, J. & Nowak, W. 2012 Flow topology and scalar mixing in spatially heterogeneous flow fields. Geophys. Res. Lett. 39 (8), l08404.
Batchelor, G. K. 2000 An Introduction to Fluid Dynamics. Cambridge University Press.
Berkowitz, B., Cortis, A., Dentz, M. & Scher, H. 2006 Modeling non-Fickian transport in geological formations as a continuous time random walk. Rev. Geophys. 44, 2005RG000178.
Bijeljic, B., Mostaghimi, P. & Blunt, M. J. 2011 Signature of non-Fickian solute transport in complex heterogeneous porous media. Phys. Rev. Lett. 107, 204502.
de Carvalho, T. P., Morvan, H. P., Hargreaves, D. M., Oun, H. & Kennedy, A. 2017 Pore-scale numerical investigation of pressure drop behaviour across open-cell metal foams. Trans. Porous Med. 117 (2), 311336.
Cirpka, O. A., de Barros, F. P. J., Chiogna, G., Rolle, M. & Nowak, W. 2011 Stochastic flux-related analysis of transverse mixing in two-dimensional heterogeneous porous media. Water Resour. Res. 47 (6), W06515.
Cocke, W. J. 1969 Turbulent hydrodynamic line stretching: consequences of isotropy. Phys. Fluids 12 (12), 24882492.
Cushman, J. H. 2013 Theory and Applications of Transport in Porous Media, vol. 1. Springer.
De Anna, P., Le Borgne, T., Dentz, M., Tartakovsky, A. M., Bolster, D. & Davy, P. 2013 Flow intermittency, dispersion, and correlated continuous time random walks in porous media. Phys. Rev. Lett. 110 (18), 184502.
Dean, D. S., Drummond, I. T. & Horgan, R. R. 2001 Effect of helicity on the effective diffusivity for incompressible random flows. Phys. Rev. E 63, 061205.
Dentz, M., de Barros, F. P. J., Le Borgne, T. & Lester, D. R. 2018 Evolution of solute blobs in heterogeneous porous media. J. Fluid Mech. 853, 621646.
Dentz, M., Kang, P. K., Comolli, A., Le Borgne, T. & Lester, D. R. 2016a Continuous time random walks for the evolution of Lagrangian velocities. Phys. Rev. Fluids 1, 074004.
Dentz, M., Le Borgne, T., Lester, D. R. & de Barros, F. P. J. 2015 Scaling forms of particle densities for Lévy walks and strong anomalous diffusion. Phys. Rev. E 92 (3), 032128.
Dentz, M., Lester, D. R., Borgne, T. L. & de Barros, F. P. J. 2016b Coupled continuous-time random walks for fluid stretching in two-dimensional heterogeneous media. Phys. Rev. E 94 (6), 061102.
Dieci, L., Russell, R. D. & Van Vleck, E. S. 1997 On the compuation of Lyapunov exponents for continuous dynamical systems. SIAM J. Numer. Anal. 34 (1), 402423.
Dieci, L. & Van Vleck, E. S. 2008 On the error in QR integration. SIAM J. Numer. Anal. 46 (3), 11661189.
Duplat, J., Innocenti, C. & Villermaux, E. 2010 A nonsequential turbulent mixing process. Phys. Fluids 22 (3), 035104.
Edery, Y., Guadagnini, A., Scher, H. & Berkowitz, B. 2014 Origins of anomalous transport in heterogeneous media: structural and dynamic controls. Water Resour. Res. 50 (2), 14901505.
Finnigan, J. J. 1990 Streamline coordinates, moving frames, chaos and integrability in fluid flow. In Proc. IUTAM Symp. Topological Fluid Mechanics (ed. Moffat, H. K. & Tsinober, A.), vol. 1, pp. 6474. Cambridge University Press.
Finnigan, J. J. 1983 A streamline coordinate system for distorted two-dimensional shear flows. J. Fluid Mech. 130, 241258.
Fiori, A., Jankovic, I., Dagan, G. & Cvetkovic, V. 2007 Ergodic transport through aquifers of non-Gaussian log conductivity distribution and occurence of anomalous behavior. Water Resour. Res. 43, W09407.
Girimaji, S. S. & Pope, S. B. 1990 Material-element deformation in isotropic turbulence. J. Fluid Mech. 220, 427458.
Holm, D. D. & Kimura, Y. 1991 Zero-helicity Lagrangian kinematics of three-dimensional advection. Phys. Fluids A 3 (5), 10331038.
Holzner, M., Morales, V. L., Willmann, M. & Dentz, M. 2015 Intermittent Lagrangian velocities and accelerations in three-dimensional porous medium flow. Phys. Rev. E 92, 013015.
Kang, P. K., Dentz, M., Le Borgne, T. & Juanes, R. 2015 Anomalous transport on regular fracture networks: impact of conductivity heterogeneity and mixing at fracture intersections. Phys. Rev. E 92, 022148.
Kelvin, Lord 1884 Reprint of Papers on Electrostatics and Magnetism. Macmillan & Company.
Kenkre, V. M., Montroll, E. W. & Shlesinger, M. F. 1973 Generalized master equations for continuous-time random walks. J. Stat. Phys. 9 (1), 4550.
Kraichnan, R. H. 1970 Diffusion by a random velocity field. Phys. Fluids 13 (1), 2231.
Le Borgne, T., Dentz, M. & Carrera, J. 2008a Lagrangian statistical model for transport in highly heterogeneous velocity fields. Phys. Rev. Lett. 101, 090601.
Le Borgne, T., Dentz, M. & Carrera, J. 2008b Spatial Markov processes for modeling Lagrangian particle dynamics in heterogeneous porous media. Phys. Rev. E 78, 026308.
Le Borgne, T., Dentz, M. & Villermaux, E. 2013 Stretching, coalescence, and mixing in porous media. Phys. Rev. Lett. 110, 204501.
Le Borgne, T., Dentz, M. & Villermaux, E. 2015 The lamellar description of mixing in porous media. J. Fluid Mech. 770, 458498.
Lester, D. R., Dentz, M. & Le Borgne, T. 2016 Chaotic mixing in three-dimensional porous media. J. Fluid Mech. 803, 144174.
Meneveau, C. 2011 Lagrangian dynamics and models of the velocity gradient tensor in turbulent flows. Annu. Rev. Fluid Mech. 43 (1), 219245.
Moffatt, H. K. 1969 The degree of knottedness of tangled vortex lines. J. Fluid Mech. 35 (1), 117129.
Ottino, J. M. 1989 The Kinematics of Mixing: Stretching, Chaos, and Transport. Cambridge University Press.
Scher, H. & Lax, M. 1973 Stochastic transport in a disordered solid. Part I. Theory. Phys. Rev. B 7 (1), 44914502.
Sposito, G. 2001 Topological groundwater hydrodynamics. Adv. Water Resour. 24 (7), 793801.
Tabor, M. 1992 Stretching and Alignment in General Flow Fields: Classical Trajectories from Reynolds Number Zero to Infinity, pp. 83110. Springer.
Thalabard, S., Krstulovic, G. & Bec, J. 2014 Turbulent pair dispersion as a continuous-time random walk. J. Fluid Mech. 755, R4.
Truesdell, C. & Noll, W. 1992 The Non-linear Field Theories of Mechanics, vol. 2. Springer.
Tyukhova, A., Dentz, M., Kinzelbach, W. & Willmann, M. 2016 Mechanisms of anomalous dispersion in flow through heterogeneous porous media. Phys. Rev. Fluids 1, 074002.
Ye, Y., Chiogna, G., Cirpka, O. A., Grathwohl, P. & Rolle, M. 2015 Experimental evidence of helical flow in porous media. Phys. Rev. Lett. 115, 194502.
Zaburdaev, V., Denisov, S. & Klafter, J. 2015 Lévy walks. Rev. Mod. Phys. 87, 483530.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Fluid deformation in random steady three-dimensional flow

  • Daniel R. Lester (a1), Marco Dentz (a2), Tanguy Le Borgne (a3) and Felipe P. J. de Barros (a4)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed