Skip to main content Accessibility help
×
Home

Flow structure on a simultaneously pitching and rotating wing

  • M. Bross (a1) and D. Rockwell (a1)

Abstract

A technique of particle image velocimetry is employed to characterize the three-dimensional flow structure on a wing subjected to simultaneous pitch-up and rotational motions. Distinctive vortical structures arise, relative to the well-known patterns on a wing undergoing either pure pitch-up or pure rotation. The features associated with these simultaneous motions include: stabilization of the large-scale vortex generated at the leading edge, which, for pure pitch-up motion, rapidly departs from the leading-edge region; preservation of the coherent vortex system involving both the tip vortex and the leading-edge vortex (LEV), which is severely degraded for pure rotational motion; and rapid relaxation of the flow structure upon termination of the pitch-up component, whereby the relaxed flow converges to a similar state irrespective of the pitch rate. Three-dimensional surfaces of iso- $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}{Q}$ and helicity are employed in conjunction with sectional representations of spanwise vorticity, velocity and vorticity flux to interpret the flow physics.

Copyright

Corresponding author

Email address for correspondence: dor0@lehigh.edu

References

Hide All
Adrian, R. J. & Westerweel, J. 2010 Particle Image Velocimetry. Cambridge University Press.
Ansari, S. A., Phillips, N., Stabler, G., Wilkins, P. C., Zbikowski, R. & Knowles, K. 2009 The effect of advance ratio on the aerodynamics of revolving wings. Exp. Fluids 46, 777798; and Erratum Exp. Fluids 51, 2011, 571–572.
Bross, M., Ozen, C. A. & Rockwell, D. 2013 Flow structure on a rotating wing: effect of steady incident flow. Phys. Fluids 25.
Carr, Z., Chen, C. & Ringuette, M. J. 2013 Finite-span rotating wings: three-dimensional vortex formation and variations with aspect ratio. Exp. Fluids 54, 14441470.
Cheng, B., Sane, S. P., Barbera, G., Troolin, D. R., Strand, T. & Deng, X. 2013 Three-dimensional flow visualization and vorticity dynamics in revolving wings. Exp. Fluids 54, 14231425.
Dickson, W. B. & Dickinson, M. H. 2004 The effect of advance ratio on the aerodynamics of revolving wings. J. Expl Biol. 207, 42694281.
Ekaterinaris, J. & Platzer, M. 1998 Computational predictions of airfoil dynamic stall. Prog. Aerosp. Sci. 33, 759846.
Eldredge, J. D. & Wang, C.2010 High-fidelity simulations and low-order modeling of a rapidly pitching plate. AIAA Paper 2010-4281.
Ellington, C. P., van der Berg, C., Willmott, A. P. & Thomas, A. L. R. 1996 Leading-edge vortices in insect flight. Nature 384, 1926.
Garmann, D. J. & Visbal, M. R. 2011 Numerical investigation of transitional flow over a rapidly pitching plate. Phys. Fluids 23, 094106.
Garmann, D. J. & Visbal, M. R. 2014 Dynamics of revolving wings for various aspect ratios. J. Fluid Mech. 686, 451483.
Garmann, D. J., Visbal, M. R. & Orkwis, P. D. 2013 Three-dimensional flow structure and aerodynamic loading on revolving wing. Phys. Fluids 25, 034101.
Granlund, K., Ol, M. & Bernal, L.2011 Experiments on pitching plates: force and flowfield measurements at low Reynolds number. AIAA Paper 2011-872.
Hartloper, C., Kinzel, M. & Rival, D. E. 2013 On the competition between leading-edge and tip-vortex growth for a pitching plant. Exp. Fluids 54, 14471458.
Hunt, J. C. R., Wray, A. A. & Moin, P. 1988 Eddies, stream, and convergence zones in turbulent flows. In Studying Turbulence Using Numerical Simulation Databases, vol. 2, pp. 193208.
Kim, D. & Gharib, M. 2010 Experimental study of three-dimensional vortex structures in translating and rotating plates. Exp. Fluids 49, 329339.
Lawson, N. J. & Wu, J. 1997 Three-dimensional particle image velocimetry: error analysis of stereoscopic techniques. Meas. Sci. Technol. 8, 897900.
Le, T. B., Borazjani, I., Kang, S. & Sotiropoulos, F. 2011 On the structure of vortex rings from inclined nozzles. J. Fluid Mech. 686, 451483.
Lehmann, F. O. & Dickinson, M. H. 1998 The control of wing kinematic and flight forces in fruit flies. J. Expl Biol. 401, 385401.
Lentink, D. & Dickinson, M. H. 2009a Biofluiddynamic scaling of flapping, spinning and translating fins and wings. J. Expl Biol. 212, 26912704.
Lentink, D. & Dickinson, M. H. 2009b Rotational accelerations stabilize leading edge vortices on revolving fly wings. J. Expl Biol. 212, 27052719.
McCroskey, W. J. 1982 Unsteady airfoils. Annu. Rev. Fluid Mech. 14, 285311.
Moffatt, H. 1969 The degree of knottedness of tangled vortex lines. J. Fluid Mech. 35, 117129.
Ozen, C. A. & Rockwell, D. 2011 Flow structure on a rotating plate. Exp. Fluids 52, 207223.
Ozen, C. A. & Rockwell, D. 2012 Three-dimensional vortex structure on a rotating wing. J. Fluid Mech. 748, 932956.
Poelma, C., Dickson, W. B. & Dickinson, M. H. 2006 Time-resolved reconstruction of the full velocity field around a dynamically-scaled flapping wing. Exp. Fluids 41, 213225.
Sane, S. P. 2003 The aerodynamics of insect flight. J. Expl Biol. 206, 41914208.
Shih, C., Lourenco, L., Van Dommelen, L. & Krothapalli, A. 1992 High-fidelity simulations and low-order modeling of a rapidly pitching plate. AIAA J. 30, 11531161.
Shyy, W., Aono, H., Chimakurthi, S. K., Trizila, P., Kang, C.-K., Cesnik, C. E. S. & Liu, H. 2010 Recent progress in flapping wing aerodynamics and aeroelasticity. Prog. Aerosp. Sci. 46, 284327.
Visbal, M. R.2011 Three-dimensional flow structure on a heaving low-aspect-ratio wing. AIAA Paper 2011-219.
Visbal, M. R.2012 Flow structure and unsteady loading over a pitching and perching low-aspect-ratio wing. AIAA Paper 2012-3279.
Visbal, M. R. & Shang, J. S. 1989 Investigations of the flow structure around a rapidly pitching airfoill. AIAA J. 27, 10441051.
Wilkins, P. & Knowles, K.2007 Investigation of aerodynamics relevant to flapping-wing micro air vehicles. AIAA Paper 2007-4338.
Wojcik, C. J. & Buchholz, J. H. 2014 Parameter variation and the leading-edge vortex of a rotating flat plate. AIAA J. 52, 348357.
Yilmaz, T. O.2011 Investigation of three-dimensional flow structure on maneuvering finite-span wings. PhD thesis, Lehigh University.
Yilmaz, T., Ol, M. & Rockwell, D. 2010 Scaling of flow separation on a pitching low aspect ratio plate. J. Fluids Struct. 26, 10341041.
Yilmaz, T. O. & Rockwell, D. 2012 Flow structure on finite-span wings due to pitch-up motion. J. Fluid Mech. 691, 518545.
Zhang, X. & Schluter, J. U. 2012 Numerical study of the influence of the Reynolds-number on the lift created by a leading edge vortex. Phys. Fluids 24, 065102.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Related content

Powered by UNSILO

Flow structure on a simultaneously pitching and rotating wing

  • M. Bross (a1) and D. Rockwell (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.