Skip to main content Accessibility help
×
×
Home

Flow of liquids through paper

  • Brendan D. MacDonald (a1)

Abstract

The flow of liquids through paper is challenging to model due to the complexity and disordered layout of the fibre matrix. The expanding use and capability of microfluidic paper-based analytical devices ( $\unicode[STIX]{x1D707}$ PADs) and their requirement for precision has increased the need to accurately predict the flow of liquids through paper. Many studies have developed models and revealed some of the physical mechanisms responsible for the flow behaviour, but we still lack a complete understanding, particularly in relation to how the fluid fills the various voids with a wide range of shapes and sizes in the fibre matrix of paper. In the featured article, Chang et al. (J. Fluid Mech., vol. 845, 2018, 36–50) used a combined experimental and theoretical approach to uncover the importance of the liquid filling the intra-fibre pores, showed that this results in deviation from the flow behaviour predicted by the Lucas–Washburn equation and developed a model which accounts for this effect.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Flow of liquids through paper
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Flow of liquids through paper
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Flow of liquids through paper
      Available formats
      ×

Copyright

Corresponding author

Email address for correspondence: Brendan.MacDonald@uoit.ca

References

Hide All
Amaral, L. A. N., Barabási, A.-L., Buldyrev, S. V., Havlin, S. & Stanley, H. E. 1994 New exponent characterizing the effect of evaporation on imbibition experiments. Phys. Rev. Lett. 72, 641644.
Balankin, A. S., López, H. Z., León, E. P., Matamoros, D. M., Ruiz, L. M., López, D. S. & Rodríguez, M. A. 2013 Depinning and dynamics of imbibition fronts in paper under increasing ambient humidity. Phys. Rev. E 87, 014102.
Bell, J. M. & Cameron, F. K. 1906 The flow of liquids through capillary spaces. J. Phys. Chem. 10 (8), 658674.
Bico, J. & Quéré, D. 2003 Precursors of impregnation. Europhys. Lett. 61, 348353.
Cate, D. M., Adkins, J. A., Mettakoonpitak, J. & Henry, C. S. 2015 Recent developments in paper-based microfluidic devices. Anal. Chem. 87, 1941.
Chang, S., Seo, J., Hong, S., Lee, D.-G. & Kim, W. 2018 Dynamics of liquid imbibition through paper with intra-fiber pores. J. Fluid Mech. 845, 3650.
Gong, M. M. & Sinton, D. 2017 Turning the page: advancing paper-based microfluidics for broad diagnostic application. Chem. Rev. 117, 84478480.
Kvick, M., Martinez, D. M., Hewitt, D. R. & Balmforth, N. J. 2017 Imbibition with swelling: capillary rise in thin deformable porous media. Phys. Rev. Fluids 2, 074001.
Lucas, V. R. 1918 Ueber das zeitgesetz des kapillaren aufstiegs von flüssigkeiten. Kolloid-Zeitschrift 23, 1522.
Martinez, A. W., Phillips, S. T., Whitesides, G. M. & Carrilho, E. 2010 Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal. Chem. 82, 310.
Masoodi, R. & Pillai, K. M. 2010 Darcy’s law-based model for wicking in paper-like swelling porous media. AIChE J. 56, 22572267.
Reyssat, M., Courbin, L., Reyssat, E. & Stone, H. A. 2008 Imbibition in geometries with axial variations. J. Fluid Mech. 615, 335344.
Roberts, R. J., Senden, T. J., Knackstedt, M. A. & Lyne, M. B. 2003 Spreading of aqueous liquids in unsized papers is by film flow. J. Pulp Pap. Sci. 29, 123131.
Schoelkopf, J., Gane, P. A. C., Ridgway, C. J. & Matthews, G. P. 2002 Practical observation of deviation from Lucas–Washburn scaling in porous media. Colloids Surf. A 206, 445454.
Schuchardt, D. R. & Berg, J. C. 1991 Liquid transport in composite cellulose-superabsorbent fiber networks. Wood Fiber Sci. 23, 342357.
Sorbie, K. S., Wu, Y. Z. & McDougall, S. R. 1995 The extended Washburn equation and its application to the oil/water pore doublet problem. J. Colloid Interface Sci. 174, 289301.
Szekely, J., Neumann, A. W. & Chuang, Y. K. 1971 The rate of capillary penetration and the applicability of the Washburn equation. J. Colloid Interface Sci. 35, 273278.
Walji, N. & MacDonald, B. D. 2016 Influence of geometry and surrounding conditions on fluid flow in paper-based devices. Micromachines 7, 73.
Washburn, E. W. 1921 The dynamics of capillary flow. Phys. Rev. 17, 273283.
Yetisen, A. K., Akram, M. S. & Lowe, C. R. 2013 Paper-based microfluidic point-of-care diagnostic devices. Lab on a Chip 13, 22102251.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed