Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-07-06T16:40:54.148Z Has data issue: false hasContentIssue false

The flow fields in and around a droplet moving axially within a tube

Published online by Cambridge University Press:  29 March 2006

G. Hetsroni
Affiliation:
Department of Nuclear Science
S. Haber
Affiliation:
Department of Aeronautical Engineering
E. Wacholder
Affiliation:
Department of Nuclear Science Technion, Israel Institute of Technology, Haifa

Abstract

A solution is presented for the flow field in and around a single spherical droplet or bubble moving axially at an arbitrary radial location, within a long circular tube. In the tube there is viscous fluid flowing with a constant Poiseuillian velocity distribution far from the droplet.

The settling velocity of the droplet or bubble is \begin{eqnarray*} U = \frac{2(\rho_i-\rho_e)ga^2}{9\mu_e}\frac{1+\alpha}{\frac{2}{3}+\alpha}\left[1-\frac{2+3\alpha}{3(1+\alpha)}\left(\frac{a}{R_0}\right)f\left(\frac{b}{R_0}\right)\right]+U_0\left[1-\left(\frac{b}{R_0}\right)^2\right.\\ \left. - \frac{2\alpha}{2+3\alpha}\left(\frac{a}{R_0}\right)^2\right] + O\left(\frac{a}{R_0}\right)^3. \end{eqnarray*} This is a general equation and it contains as special cases the familiar solutions of Stokes, Hadamard-Rybczynski, Brenner & Happel, Greenstein & Happel and Haberman & Sayre.

The function describing the deviation of the interface from sphericity is solved and an iterative procedure is suggested for obtaining higher order solutions.

Type
Research Article
Copyright
© 1970 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brenner, H. & Happel, J. 1958 J. Fluid Mech. 4, 195.
Chaffey, C. E., Brenner, H. & Mason, S. G. 1965 Rheologica Acta, 4, 64.
Famularo, J. 1962 Dr Eng. Sci. Thesis, New York University.
Goldsmith, H. L. & Mason, S. G. 1962 J. Colloid Sci. 17, 448.
Greenstein, T. 1966 Ph.D. Thesis, New York University.
Greenstein, T. & Happel, J. 1968 J. Fluid Mech. 34, 705.
Haber, S. 1969 M.Sc. Thesis, Israel Institute of Technology, Haifa.
Haberman, W. L. & Sayre, R. M. 1958 David Taylor Model Basin (Washington) Report 1143.
Happel, J. & Brenner, H. 1965 Low Reynolds Number Hydrodynamics. Englewood Cliffs, N.J.: Prentice-Hall.
Hetsroni, G. & Haber, S. 1969 Department of Nuclear Science, Israel Institute of Technology, Haifa, TNSD-P/209.
Lamb, H. 1945 Hydrodynamics. New York: Dover.
Landau, L. D. & Lifshitz, E. M. 1959 Fluid Mechanics. Reading, Mass.: Addison-Wesley.
Levich, V. G. 1962 Physiochemical Hydrodynamics. Englewood Cliffs, N.J.: Prentice-Hall.