Skip to main content Accessibility help
×
Home

Flexibility increases lift for passive fluttering wings

  • Daniel Tam (a1)

Abstract

We examine experimentally the influence of flexibility on the side-to-side fluttering motion of passive wings settling under the influence of gravity. Our results demonstrate the existence of an optimal flexibility that allows flexible wings to remain airborne twice as long as their rigid counterparts of identical mass and size. Flow visualization and measurements allow us to elucidate the role of flexibility in generating increased lift and wing circulation by shedding additional vorticity at the turning point. Theoretical scalings are derived from a reduced model of the flight dynamics and yield quantitative agreement with experiments. These scalings rationalize the strong positive correlation between flexibility and flight time. Our experimental results and theoretical scalings represent an ideal system for the validation of computational approaches to model biologically inspired fluid–structure interaction problems.

Copyright

Corresponding author

Email address for correspondence: d.s.w.tam@tudelft.nl

References

Hide All
Alben, S. 2008 Optimal flexibility of a flapping appendage in an inviscid fluid. J. Fluid Mech. 614, 355380.
Alben, S., Shelley, M. & Zhang, J. 2002 Drag reduction through self-similar bending of a flexible body. Nature 420 (6915), 479481.
Andersen, A., Pesavento, U. & Wang, Z. 2005 Analysis of transitions between fluttering, tumbling and steady descent of falling cards. J. Fluid Mech. 541 (1), 91104.
Belmonte, A., Eisenberg, H. & Moses, E. 1998 From flutter to tumble: inertial drag and Froude similarity in falling paper. Phys. Rev. Lett. 81, 345348.
Birch, J. M. & Dickinson, M. H. 2001 Spanwise flow and the attachment of the leading-edge vortex on insect wings. Nature 412 (6848), 729733.
Combes, S. A. & Daniel, T. L. 2003 Flexural stiffness in insect wings II. Spatial distribution and dynamic wing bending. J. Expl. Biol. 206 (17), 29892997.
Eloy, C., Lagrange, R., Souilliez, C. & Schouveiler, L. 2008 Aeroelastic instability of cantilevered flexible plates in uniform flow. J. Fluid Mech. 611 (1), 97106.
Heathcote, S. & Gursul, I. 2007 Flexible flapping airfoil propulsion at low Reynolds numbers. AIAA J. 45 (5), 10661079.
Heisinger, L., Newton, P. & Kanso, E. 2014 Coins falling in water. J. Fluid Mech. 742, 243253.
Hu, R. & Wang, L. 2014 Motion transitions of falling plates via quasisteady aerodynamics. Phys. Rev. E 90 (1), 013020.
Huang, W., Liu, H., Wang, F., Wu, J. & Zhang, H. P. 2013 Experimetal study of a freely falling plate with an inhomogeneous mass distribution. Phys. Rev. E 88 (5), 053008.
Mahadevan, L. 1996 Tumbling of a falling card. C. R. Acad. Sci. Paris II 323, 729736.
Masoud, H. & Alexander, A. 2010 Resonance of flexible flapping wings at low Reynolds number. Phys. Rev. E 81 (5), 056304.
Michelin, S. & Llewellyn-Smith, S. G. 2009 Resonance and propulsion performance of a heaving flexible wing. Phys. Fluids 21, 071902.
Percin, M., Hu, Y., van Oudheusden, B. W., Remes, B. & Scarano, F. 2011 Wing flexibility effects in clap-and-fling. Intl J. Micro Air Veh. 3 (4), 217227.
Ramananarivo, S., Godoy-Diana, R. & Thiria, B. 2011 Rather than resonance, flapping wing flyers may play on aerodynamics to improve performance. Proc. Natl Acad. Sci. 108 (15), 59645969.
Shelley, M., Vandenberghe, N. & Zhang, J. 2005 Heavy flags undergo spontaneous oscillations in flowing water. Phys. Rev. Lett. 94 (9), 094302.
Spagnolie, S. E., Moret, L., Shelley, M. J. & Zhang, J. 2010 Surprising behaviors in flapping locomotion with passive pitching. Phys. Fluids 22 (4), 041903.
Tam, D., Bush, J. W. M., Robitaille, M. & Kudrolli, A. 2010 Tumbling dynamics of passive flexible wings. Phys. Rev. Lett. 104 (18), 184504.
Tchoufag, J., Fabre, D. & Magnaudet, J. 2014 Global linear stability analysis of the wake and path of buoyancy-driven disks and thin cylinders. J. Fluid Mech. 740, 2783111.
Zhao, L., Huang, Q., Deng, X. & Sane, S. P. 2010 Aerodynamic effects of flexibility in flapping wings. J. R. Soc. Interface 7 (44), 485497.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Flexibility increases lift for passive fluttering wings

  • Daniel Tam (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed