## References

Alméras, E., Mathai, V., Lohse, D. & Sun, C.
2017
Experimental investigation of the turbulence induced by a bubble swarm rising within incident turbulence. J. Fluid Mech.
825, 1091–1112.

Bellani, G., Byron, M. L., Collignon, A. G., Meyer, C. R. & Variano, E. A.
2012
Shape effects on turbulent modulation by large nearly neutrally buoyant particles. J. Fluid Mech.
712, 41–60.

van den Berg, T. H., van Gils, D. P. M., Lathrop, D. P. & Lohse, D.
2007
Bubbly turbulent drag reduction is a boundary layer effect. Phys. Rev. Lett.
98, 084501.

van den Berg, T. H., Luther, S., Lathrop, D. P. & Lohse, D.
2005
Drag reduction in bubbly Taylor–Couette turbulence. Phys. Rev. Lett.
94, 044501.

Bragg, A. D., Ireland, P. J. & Collins, L. R.
2015
Mechanisms for the clustering of inertial particles in the inertial range of isotropic turbulence. Phys. Rev. E
92 (2), 023029.

Calzavarini, E., Cencini, M., Lohse, D. & Toschi, F.
2008
Quantifying turbulence-induced segregation of inertial particles. Phys. Rev. Lett.
101 (8), 084504.

Ceccio, S. L.
2010
Friction drag reduction of external flows with bubble and gas injection. Annu. Rev. Fluid Mech.
42, 183–203.

Cisse, M., Homann, H. & Bec, J.
2013
Slipping motion of large neutrally buoyant particles in turbulence. J. Fluid Mech.
735, R1.

Cisse, M., Saw, E.-W., Gibert, M., Bodenschatz, E. & Bec, J.
2015
Turbulence attenuation by large neutrally buoyant particles. Phys. Fluids
27, 061702.

Colin, C., Fabre, J. & Kamp, A.
2012
Turbulent bubbly flow in pipe under gravity and microgravity conditions. J. Fluid Mech.
711, 469–515.

Costa, P., Picano, F., Brandt, L. & Breugem, W.-P.
2016
Universal scaling laws for dense particle suspensions in turbulent wall-bounded flows. Phys. Rev. Lett.
117, 134501.

Dabiri, S., Lu, J. & Tryggvason, G.
2013
Transition between regimes of a vertical channel bubbly upflow due to bubble deformability. Phys. Fluids
25, 102110.

Eckhardt, B., Grossmann, S. & Lohse, D.
2007
Torque scaling in turbulent Taylor–Couette flow between independently rotating cylinders. J. Fluid Mech.
581, 221–250.

Einstein, A.
1906
Eine neue Bestimmung der Moleküldimensionen. Ann. Phys.
324 (2), 289–306.

Elghobashi, S.
1994
On predicting particle-laden turbulent flows. Appl. Sci. Res.
52 (4), 309–329.

Fardin, M. A., Perge, C. & Taberlet, N.
2014
The hydrogen atom of fluid dynamics – introduction to the Taylor–Couette flow for soft matter scientists. Soft Matt.
10, 3523–3535.

Fiabane, L., Zimmermann, R., Volk, R., Pinton, J.-F. & Bourgoin, M.
2012
Clustering of finite-size particles in turbulence. Phys. Rev. E
86 (3), 035301.

Fujiwara, A., Minato, D. & Hishida, K.
2004
Effect of bubble diameter on modification of turbulence in an upward pipe flow. Intl J. Heat Fluid Flow
25 (3), 481–488.

van Gils, D. P., Bruggert, G.-W., Lathrop, D. P., Sun, C. & Lohse, D.
2011
The Twente Turbulent Taylor–Couette (T^{3}C) facility: strongly turbulent (multi-phase) flow between independently rotating cylinders. Rev. Sci. Instrum.
82, 025105.

van Gils, D. P., Narezo Guzman, D., Sun, C. & Lohse, D.
2013
The importance of bubble deformability for strong drag reduction in bubbly turbulent Taylor–Couette flow. J. Fluid Mech.
722, 317–347.

Glycerine Producers’ Association
1963
Physical Properties of Glycerine and its Solutions. Glycerine Producers’ Association.

Gore, R. A. & Crowe, C. T.
1989
Effect of particle size on modulating turbulent intensity. Intl J. Multiphase Flow
15 (2), 279–285.

Grossmann, S., Lohse, D. & Sun, C.
2016
High-Reynolds number Taylor–Couette turbulence. Annu. Rev. Fluid Mech.
48, 53–80.

Huisman, S. G., van Gils, D. P. & Sun, C.
2012
Applying laser Doppler anemometry inside a Taylor–Couette geometry using a ray-tracer to correct for curvature effects. Eur. J. Mech. (B/Fluids)
36, 115–119.

Huisman, S. G., Scharnowski, S., Cierpka, C., Kähler, C. J., Lohse, D. & Sun, C.
2013
Logarithmic boundary layers in strong Taylor–Couette turbulence. Phys. Rev. Lett.
110, 264501.

Huisman, S. G., van der Veen, R. C., Sun, C. & Lohse, D.
2014
Multiple states in highly turbulent Taylor–Couette flow. Nat. Comm.
5, 3820.

Kazerooni, H. T., Fornari, W., Hussong, J. & Brandt, L.
2017
Inertial migration in dilute and semidilute suspensions of rigid particles in laminar square duct flow. Phys. Fluids
2, 084301.

Kidanemariam, A. G., Chan-Braun, C., Doychev, T. & Uhlmann, M.
2013
Direct numerical simulation of horizontal open channel flow with finite-size, heavy particles at low solid volume fraction. New J. Phys.
15, 025031.

Kulick, J. D., Fessler, J. R. & Eaton, J. K.
1994
Particle response and turbulence modification in fully developed channel flow. J. Fluid Mech.
277, 109–134.

Lashgari, I., Picano, F., Breugem, W.-P. & Brandt, L.
2014
Laminar, turbulent, and inertial shear-thickening regimes in channel flow of neutrally buoyant particle suspensions. Phys. Rev. Lett.
113, 254502.

Lathrop, D. P., Fineberg, J. & Swinney, H. L.
1992
Turbulent flow between concentric rotating cylinders at large Reynolds number. Phys. Rev. Lett.
68, 1515.

Lewis, G. S. & Swinney, H. L.
1999
Velocity structure functions, scaling, and transitions in high-Reynolds-number Couette–Taylor flow. Phys. Rev. E
59, 5457.

Liu, T. J. & Bankoff, S. G.
1993
Structure of air–water bubbly flow in a vertical pipe – I. Liquid mean velocity and turbulence measurements. Intl J. Heat Mass Transfer
36 (4), 1049–1060.

Lu, J., Fernández, A. & Tryggvason, G.
2005
The effect of bubbles on the wall drag in a turbulent channel flow. Phys. Fluids
17, 095102.

Machicoane, N. & Volk, R.
2016
Lagrangian velocity and acceleration correlations of large inertial particles in a closed turbulent flow. Phys. Fluids
28, 035113.

Maryami, R., Farahat, S., Javad poor, M. & Shafiei Mayam, M. H.
2014
Bubbly drag reduction in a vertical Couette–Taylor system with superimposed axial flow. Fluid Dyn. Res.
46 (5), 055504.

Mathai, V., Calzavarini, E., Brons, J., Sun, C. & Lohse, D.
2016
Microbubbles and microparticles are not faithful tracers of turbulent acceleration. Phys. Rev. Lett.
117, 024501.

Mathai, V., Huisman, S. G., Sun, C., Lohse, D. & Bourgoin, M.2018 Enhanced dispersion of big bubbles in turbulence. Available at: arXiv:1801.05461.
Mathai, V., Prakash, V. N., Brons, J., Sun, C. & Lohse, D.
2015
Wake-driven dynamics of finite-sized buoyant spheres in turbulence. Phys. Rev. Lett.
115, 124501.

Mazzitelli, I. M., Lohse, D. & Toschi, F.
2003
The effect of microbubbles on developed turbulence. Phys. Fluids
15, L5.

Murai, Y.
2014
Frictional drag reduction by bubble injection. Exp. Fluids
55 (7), 1773.

Muste, M. & Patel, V. C.
1997
Velocity profiles for particles and liquid in open-channel flow with suspended sediment. ASCE J. Hydraul. Engng
123 (9), 742–751.

Naso, A. & Prosperetti, A.
2010
The interaction between a solid particle and a turbulent flow. New J. Phys.
12, 033040.

Ostilla-Mónico, R., Stevens, R. J. A. M., Grossmann, S., Verzicco, R. & Lohse, D.
2013
Optimal Taylor–Couette flow: direct numerical simulations. J. Fluid Mech.
719, 14–46.

Pan, Y. & Banerjee, S.
1996
Numerical simulation of particle interactions with wall turbulence. Phys. Fluids
8, 2733.

Paoletti, M. S. & Lathrop, D. P.
2011
Angular momentum transport in turbulent flow between independently rotating cylinders. Phys. Rev. Lett.
106, 024501.

Peskin, C. S.
2002
The immersed boundary method. Acta Numerica
11, 479–517.

Picano, F., Breugem, W.-P. & Brandt, L.
2015
Turbulent channel flow of dense suspensions of neutrally buoyant spheres. J. Fluid Mech.
764, 463–487.

Poelma, C., Westerweel, J. & Ooms, G.
2007
Particle–fluid interactions in grid-generated turbulence. J. Fluid Mech.
589, 315–351.

Procaccia, I., L’vov, V. S. & Benzi, R.
2008
Colloquium: theory of drag reduction by polymers in wall-bounded turbulence. Rev. Mod. Phys.
80 (1), 225–247.

Roghair, I., Mercado, J. M., Annaland, M. V. S., Kuipers, H., Sun, C. & Lohse, D.
2011
Energy spectra and bubble velocity distributions in pseudo-turbulence: numerical simulations versus experiments. Intl J. Multiphase Flow
37 (9), 1093–1098.

Shawkat, M. E., Ching, C. Y. & Shoukri, M.
2008
Bubble and liquid turbulence characteristics of bubbly flow in a large diameter vertical pipe. Intl J. Multiphase Flow
34 (8), 767–785.

So, S., Morikita, H., Takagi, S. & Matsumoto, Y.
2002
Laser Doppler velocimetry measurement of turbulent bubbly channel flow. Exp. Fluids
33 (1), 135–142.

Stickel, J. J. & Powell, R. L.
2005
Fluid mechanics and rheology of dense suspensions. Annu. Rev. Fluid Mech.
37, 129–149.

Tagawa, Y., Roghair, I., Prakash, V. N., van Sint Annaland, M., Kuipers, H., Sun, C. & Lohse, D.
2013
The clustering morphology of freely rising deformable bubbles. J. Fluid Mech.
721, R2.

Toschi, F. & Bodenschatz, E.
2009
Lagrangian properties of particles in turbulence. Annu. Rev. Fluid Mech.
41, 375–404.

Tsuji, Y., Morikawa, Y. & Shiomi, H.
1984
LDV measurements of an air–solid two-phase flow in a vertical pipe. J. Fluid Mech.
139, 417–434.

Uhlmann, M.
2008
Interface-resolved direct numerical simulation of vertical particulate channel flow in the turbulent regime. Phys. Fluids
20, 053305.

Unverdi, S. O. & Tryggvason, G.
1992
A front-tracking method for viscous, incompressible, multi-fluid flows. J. Comput. Phys.
100 (1), 25–37.

Verschoof, R. A., van der Veen, R. C., Sun, C. & Lohse, D.
2016
Bubble drag reduction requires large bubbles. Phys. Rev. Lett.
117, 104502.

Vreman, A. W.
2015
Turbulence attenuation in particle-laden flow in smooth and rough channels. J. Fluid Mech.
773, 103–136.

Wang, Y., Sierakowski, A. J. & Prosperetti, A.
2017
Fully-resolved simulation of particulate flows with particles–fluid heat transfer. J. Comput. Phys.
350, 638–656.

White, C. M. & Mungal, M. G.
2008
Mechanics and prediction of turbulent drag reduction with polymer additives. Annu. Rev. Fluid Mech.
40, 235–256.

Zhao, L. H., Andersson, H. I. & Gillissen, J. J. J.
2010
Turbulence modulation and drag reduction by spherical particles. Phys. Fluids
22, 081702.