Skip to main content Accessibility help
×
Home

Films in narrow tubes

  • Georg F. Dietze (a1) and Christian Ruyer-Quil (a2) (a3)

Abstract

We consider the axisymmetric arrangement of an annular liquid film, coating the inner surface of a narrow cylindrical tube, in interaction with an active core fluid. We introduce a low-dimensional model based on the two-phase weighted residual integral boundary layer (WRIBL) formalism (Dietze & Ruyer-Quil, J. Fluid Mech., vol. 722, 2013, pp. 348–393) which is able to capture the long-wave instabilities characterizing such flows. Our model improves upon existing works by fully representing interfacial coupling and accounting for inertia as well as streamwise viscous diffusion in both phases. We apply this model to gravity-free liquid-film/core-fluid arrangements in narrow capillaries with specific attention to the dynamics leading to flooding, i.e. when the liquid film drains into large-amplitude collars that occlude the tube cross-section. We do this against the background of linear stability calculations and nonlinear two-phase direct numerical simulations (DNS). Due to the improvements of our model, we have found a number of novel/salient physical features of these flows. First, we show that it is essential to account for inertia and full interphase coupling to capture the temporal evolution of flooding for fluid combinations that are not dominated by viscosity, e.g. water/air and water/silicone oil. Second, we elucidate a viscous-blocking mechanism which drastically delays flooding in thin films that are too thick to form unduloids. This mechanism involves buckling of the residual film between two liquid collars, generating two very pronounced film troughs where viscous dissipation is drastically increased and growth effectively arrested. Only at very long times does breaking of symmetry in this region (due to small perturbations) initiate a sliding motion of the liquid film similar to observations by Lister et al. (J. Fluid Mech., vol. 552, 2006, pp. 311–343) in thin non-flooding films. This kickstarts the growth of liquid collars anew and ultimately leads to flooding. We show that streamwise viscous diffusion is essential to this mechanism. Low-frequency core-flow oscillations, such as occur in human pulmonary capillaries, are found to set off this sliding-induced flooding mechanism much earlier.

Copyright

Corresponding author

Email address for correspondence: dietze@fast.u-psud.fr

References

Hide All
Alekseenko, S. V., Nakoryakov, V. E. & Pokusaev, B. G. 1994 Wave Flow of Liquid Films. Begell House.
Aul, R. W. & Olbricht, W. L. 1990 Stability of a thin annular film in pressure-driven, low-Reynolds-number flow through a capillary. J. Fluid Mech. 215, 585599.
Bai, R., Kelkar, K. & Joseph, D. D. 1996 Direct simulation of interfacial waves in a high-viscosity-ratio and axisymmetric core–annular flow. J. Fluid Mech. 327, 134.
Bian, S., Tai, C.-F., Halpern, D., Zheng, Y. & Grotberg, J. B. 2010 Experimental study of flow fields in an airway closure model. J. Fluid Mech. 647, 391402.
Brooke Benjamin, T. 1957 Wave formation in laminar flow down an inclined plane. J. Fluid Mech. 2, 554574.
Camassa, R., Forest, M. G., Lee, L., Ogrosky, H. R. & Olander, J. 2012 Ring waves as a mass transport mechanism in air-driven core–annular flows. Phys. Rev. E 86 (6), 066305.
Chen, K. P. & Joseph, D. D. 1991 Long wave and lubrication theories for core–annular flow. Phys. Fluids 3 (11), 26272679.
Dao, E. K. & Balakotaiah, V. 2000 Experimental study of wave occlusion on falling films in a vertical pipe. AIChE J. 46 (7), 1300.
Delaunay, C. 1841 Sur la surface de révolution dont la courbure moyenne est constante. J. Math. Pures Appl. 6, 309320.
Dietze, G. F. & Ruyer-Quil, C. 2013 Wavy liquid films in interaction with a confined laminar gas flow. J. Fluid Mech. 722, 348393.
Drosos, E. I. P., Paras, S. V. & Karabelas, A. J. 2006 Counter-current gas–liquid flow in a vertical narrow channel – liquid film characteristics and flooding phenomena. Intl J. Multiphase Flow 32, 5181.
Eggers, J. & Dupont, T. F. 1994 Drop formation in a one-dimensional approximation of the Navier–Stokes equation. J. Fluid Mech. 262, 205221.
Eggers, J. & Villermaux, E. 2008 Physics of liquid jets. Rep. Prog. Phys. 71, 036601.
Everett, D. H. & Haynes, J. M. 1972 Model studies of capillary condensation. J. Colloid Interface Sci. 38 (1), 125137.
Frenkel, A. L., Babchin, A. J., Levich, B. G., Shlang, T. & Sivashinsky, G. I. 1987 Annular flows can keep unstable films from breakup: nonlinear saturation of capillary instability. J. Colloid Interface Sci. 115 (1), 225233.
Gauglitz, P. A. 1988 An extended evolution equation for liquid film breakup in cylindrical capillaries. Chem. Engng Sci. 43 (7), 14571465.
Goren, S. L. 1962 The instability of an annular thread of fluid. J. Fluid Mech. 12 (2), 309319.
Gosh, S., Mandal, T. K., Das, G. & Das, P. K. 2009 Review of oil water core annular flow. Renew. Sustain. Energy Rev. 13, 19571965.
Govindarajan, R. & Sahu, K. C. 2014 Instabilities in viscosity-stratified flow. Annu. Rev. Fluid Mech. 46, 331353.
Grotberg, J. 1994 Pulmonary flow and transport phenomena. J. Fluid Mech. 26, 529571.
Grotberg, J. 2011 Respiratory fluid mechanics. Phys. Fluids 23, 021301.
Halpern, D., Fujioka, H. & Grotberg, J. B. 2010 The effect of viscoelasticity on the stability of a pulmonary airway liquid layer. Phys. Fluids 22, 011901.
Halpern, D. & Grotberg, J. B. 2003 Nonlinear saturation of the Rayleigh-instability due to oscillatory flow in a liquid-lined tube. J. Fluid Mech. 492, 251270.
Hamacher, H., Fitton, B. & Kingdon, J. 1987 Fluid Sciences and Materials Science in Space. Springer.
Hammond, P. S. 1983 Nonlinear adjustment of a thin annular film of viscous fluid surrounding a thread of another within a circular cylindrical pipe. J. Fluid Mech. 137, 363384.
Heil, M. & Hazel, A. L. 2011 Fluid–structure interaction in internal physiological flows. Annu. Rev. Fluid Mech. 43, 141162.
Hickox, C. E. 1971 Instability due to viscosity and density stratification in axisymmetric pipe flow. Phys. Fluids 14 (2), 251262.
Hu, H. H. & Joseph, D. D. 1989 Lubricated pipelining: stability of core–annular flow. Part 2. J. Fluid Mech. 205, 359396.
Jebson, R. S. & Chen, H. 1997 Performances of falling film evaporators on whole milk and a comparison with performance on skim milk. J. Dairy Res. 64, 5767.
Jensen, O. E. 2000 Draining collars and lenses in liquid-lined vertical tubes. J. Colloid Interface Sci. 221, 3849.
Johnson, M., Kamm, R. D., Ho, L. W., Shapiro, A. & Pedley, T. J. 1991 The nonlinear growth of surface-tension-driven instabilities of a thin annular film. J. Fluid Mech. 233, 141156.
Joseph, D. D., Bai, R., Mata, C., Sury, K. & Grant, C. 1999 Self-lubricated transport of bitumen froth. J. Fluid Mech. 386, 127148.
Joseph, D. D., Chen, K. P. & Renardy, Y. Y. 1997 Core–annular flows. Annu. Rev. Fluid Mech. 29, 6590.
Kalliadasis, S., Ruyer-Quil, C., Scheid, B. & Velarde, M. G. 2012 Falling Liquid Films, Applied Mathematical Sciences, vol. 176. Springer.
Kapitza, P. L. 1948 Wave flow of thin layer of viscous fluid. Zh. Eksp. Teor. Fiz. 18 (1), 3–28 (in Russian).
Kerchman, V. 1995 Strongly nonlinear interfacial dynamics in core–annular flows. J. Fluid Mech. 290, 131166.
Kouris, C. & Tsamopoulos, J. 2001 Dynamics of axisymmetric core–annular flow in a straight tube. I. The more viscous fluid in the core, bamboo waves. Phys. Fluids 13 (4), 841858.
Kouris, C. & Tsamopoulos, J. 2002 Dynamics of the axisymmetric core–annular flow. II. The less viscous fluid in the core, saw tooth waves. Phys. Fluids 14 (3), 10111029.
Lister, J. R., Rallison, J. M., King, A. A., Cummings, L. J. & Jensen, O. E. 2006 Capillary drainage of an annular film: the dynamics of collars and lobes. J. Fluid Mech. 552, 311343.
Mayo, L. C., McCue, S. W. & Moroney, T. J. 2013 Gravity-driven fingering simulations for a thin liquid film flowing down the outside of a vertical cylinder. Phys. Rev. E 87, 053018.
McKinley, G. H. & Renardy, M. 2011 Wolfgang von ohnesorge. Phys. Fluids 23, 127101.
Mehidi, N. & Amatousse, N. 2009 Modélisation d’un écoulement coaxial en conduite circulaire de deux fluides visqueux. C. R. Méc. 337, 112118.
Newhouse, L. A. & Pozrikidis, C. 1992 The capillary instability of annular layers and liquid threads. J. Fluid Mech. 242, 193209.
Novbari, E. & Oron, A. 2009 Energy integral method for the nonlinear dynamics of an axisymmetric thin liquid film falling on a vertical cylinder. Phys. Fluids 21, 062107.
Novbari, E. & Oron, A. 2011 Analysis of time-dependent nonlinear dynamics of the axisymmetric liquid film on a vertical circular cylinder: energy integral model. Phys. Fluids 23, 012105.
von Ohnesorge, W. 1936 Die Bildung von Tropfen an Düsen und die Auflösung flüssiger Strahlen. Z. Angew. Math. Mech. 16, 355358.
Olbricht, W. L. 1996 Pore-scale prototypes of multiphase flow in porous media. Annu. Rev. Fluid Mech. 28, 187213.
d’Olce, M., Martin, J., Rakotomalala, N., Salin, D. & Talon, L. 2008 Pearl and mushroom instability patterns in two miscible fluids core annular flows. Phys. Fluids 20, 024104.
d’Olce, M., Martin, J., Rakotomalala, N., Salin, D. & Talon, L. 2009 Convective/absolute instability in miscible core–annular flow. Part 1: experiments. J. Fluid Mech. 618, 305322.
Papageorgiou, D. T., Maldarelli, C. & Rumschitzki, D. S. 1990 Nonlinear interfacial stability of core–annular film flows. Phys. Fluids 2, 340352.
Piroird, K., Clanet, C. & Quéré, D. 2011 Detergency in a tube. Soft Matt. 7, 74987503.
Popinet, S. 2009 An accurate adaptive solver for surface-tension-driven interfacial flows. J. Comput. Phys. 228, 58385866.
Pozrikidis, C. 1999 Capillary instability and breakup of a viscous thread. J. Engng Maths 36, 255275.
Preziosi, L., Chen, K. P. & Joseph, D. D. 1989 Lubricated pipelining – stability of core annular flow. J. Fluid Mech. 201, 323356.
Pumir, A., Manneville, P. & Pomeau, Y. 1983 On solitary waves running down an inclined plane. J. Fluid Mech. 135, 2750.
Quéré, D. 1999 Fluid coating on a fibre. Annu. Rev. Fluid Mech. 31, 347384.
Rayleigh, L. 1892 On the instability of cylindrical fluid surfaces. Phil. Mag. 34 (207), 177180.
Ribe, N. 2002 A general theory for the dynamics of thin viscous sheets. J. Fluid Mech. 457, 255283.
Ribe, N. 2012 Liquid rope coiling. Annu. Rev. Fluid Mech. 44, 249266.
Ruyer-Quil, C. & Kalliadasis, S. 2012 Wavy regimes of film flow down a fibre. Phys. Rev. E 85, 046302.
Ruyer-Quil, C., Kofman, N. & Chasseur, D. 2014 Dynamics of falling liquid films. Eur. Phys. J. E 37 (30), 117.
Ruyer-Quil, C. & Manneville, P. 2000 Improved modeling of flows down inclined planes. Eur. Phys. J. B 15 (2), 357369.
Ruyer-Quil, C. & Manneville, P. 2002 Further accuracy and convergence results on the modeling of flows down inclined planes by weighted-residual approximations. Phys. Fluids 14 (1), 170183.
Ruyer-Quil, C., Trevelyan, P., Giorgiutti-Dauphine, F., Duprat, C. & Kalliadasis, S. 2008 Modelling film flows down a fibre. J. Fluid Mech. 603, 431462.
Selvam, B., Talon, L., Lesshafft, L. & Meiburg, E. 2009 Convective/absolute instability in miscible core–annular flow. Part 2. Numerical simulations and nonlinear global modes. J. Fluid Mech. 618, 328348.
Shkadov, V. Ya. 1967 Wave flow regimes of a thin layer of viscous fluid subject to gravity. Fluid Dyn. 2 (1), 2934.
Sierou, A. & Lister, J. R. 2003 Self-similar solutions for viscous capillary pinch-off. J. Fluid Mech. 497, 381403.
Slim, A. C., Balmforth, N. J., Craster, R. V. & Miller, J. C. 2009 Surface wrinkling of a channelized flow. Proc. R. Soc. Lond. A 465, 123142.
Slim, A. C., Teichman, J. & Mahadevan, L. 2012 Buckling of a thin-layer Couette flow. J. Fluid Mech. 694, 528.
Suleiman, M. & Munson, B. R. 1981 Viscous buckling of thin fluid layers. Phys. Fluids 24, 15.
Tai, C.-F., Bian, S., Halpern, D., Zheng, Y., Filoche, M. & Grotberg, J. B. 2011 Numerical study of flow fields in an airway closure model. J. Fluid Mech. 677, 483502.
Thiele, U., Todorova, D. V. & Lopez, H. 2013 Gradient dynamics description for films of mixtures and suspensions: dewetting triggered by coupled film height and concentration fluctuations. Phys. Rev. Lett. 111, 117801.
Timmermans, M.-L. E. & Lister, J. R. 2002 The effect of surfactant on the stability of a liquid thread. J. Fluid Mech. 459, 289306.
Trifonov, Y. Y. 1992 Steady-state traveling waves on the surface of a viscous liquid film falling down on vertical wires and tubes. AIChE J. 38 (6), 821834.
Trifonov, Y. Y. 2010a Counter-current gas–liquid wavy film flow between the vertical plates analyzed using the Navier–Stokes equations. AIChE J. 56 (8), 19751987.
Trifonov, Y. Y. 2010b Flooding in two-phase counter-current flows: numerical investigation of the gas–liquid wavy interface using the Navier–Stokes equations. Intl J. Multiphase Flow 36, 549557.
Wang, Q. 2013 Capillary instability of a viscous liquid thread in a cylindrical tube. Phys. Fluids 25, 014104.
Wray, A. W. 2013 Electrostatically controlled large-amplitude, non-axisymetric waves in thin film flows down a cylinder. J. Fluid Mech. 736, R2.
Yarin, A. L. & Tchadarov, B. M. 1996 Onset of folding in plane liquid films. J. Fluid Mech. 307, 8599.
Yiantsios, S. G. & Higgins, B. G. 1989 Rayleigh–Taylor instability in thin viscous films. Phys. Fluids A 1, 14841501.
Yih, C.-S. 1967 Instability due to viscosity stratification. J. Fluid Mech. 27 (2), 337352.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed