## References

Ainley, J., Durkin, S., Embid, R., Boindala, P. & Cortez, R.
2008
The method of images for regularized Stokeslets. J. Comput. Phys.
227 (9), 4600–4616.

Balazs, A. C., Bhattacharya, A., Tripathi, A. & Shum, H.
2014
Designing bioinspired artificial cilia to regulate particle–surface interactions. J. Phys. Chem. Lett.
5 (10), 1691–1700.

Berg, H. C. & Anderson, R. A.
1973
Bacteria swim by rotating their flagellar filaments. Nature
245 (5425), 380–382.

Brennen, C. & Winet, H.
1977
Fluid mechanics of propulsion by cilia and flagella. Annu. Rev. Fluid Mech.
9 (1), 339–398.

Brenner, H.
1962
Effect of finite boundaries on the Stokes resistance of an arbitrary particle. J. Fluid Mech.
12 (01), 35–48.

Cortez, R.
2001
The method of regularized Stokeslets. SIAM J. Sci. Comput.
23 (4), 1204–1225.

Cortez, R.
2018
Regularized Stokeslet segments. J. Comput. Phys.
375, 783–796.

Curtis, M. P., Kirkman-Brown, J. C., Connolly, T. J. & Gaffney, E. A.
2012
Modelling a tethered mammalian sperm cell undergoing hyperactivation. J. Theor. Biol.
309, 1–10.

Delmotte, B., Climent, E. & Plouraboué, F.
2015
A general formulation of Bead Models applied to flexible fibers and active filaments at low Reynolds number. J. Comput. Phys.
286, 14–37.

Elgeti, J., Kaupp, U. B. & Gompper, G.
2010
Hydrodynamics of sperm cells near surfaces. Biophys. J.
99 (4), 1018–1026.

Fauci, L. J. & McDonald, A.
1995
Sperm motility in the presence of boundaries. Bull. Math. Biol.
57 (5), 679–699.

Friedrich, B. M., Riedel-Kruse, I. H., Howard, J. & Julicher, F.
2010
High-precision tracking of sperm swimming fine structure provides strong test of resistive force theory. J. Expl Biol.
213 (8), 1226–1234.

Gadêlha, H., Gaffney, E. A., Smith, D. J. & Kirkman-Brown, J. C.
2010
Nonlinear instability in flagellar dynamics: a novel modulation mechanism in sperm migration?
J. R. Soc. Interface
7 (53), 1689–1697.

Gaffney, E. A., Gadêlha, H., Smith, D. J., Blake, J. R. & Kirkman-Brown, J. C.
2011
Mammalian sperm motility: observation and theory. Annu. Rev. Fluid Mech.
43 (1), 501–528.

Gray, J.
1928
Ciliary Movement. Cambridge University Press.

Gray, J. & Hancock, G. J.
1955
The propulsion of sea-urchin spermatozoa. J. Expl Biol.
32 (4), 802–814.

Guglielmini, L., Kushwaha, A., Shaqfeh, E. S. G. & Stone, H. A.
2012
Buckling transitions of an elastic filament in a viscous stagnation point flow. Phys. Fluids
24 (12), 123601.

Hall-McNair, A. L., Gallagher, M. T., Montenegro-Johnson, T. D., Gadêlha, H. & Smith, D. J.2019 Efficient implementation of elastohydrodynamics via integral operators. 1–43; arXiv:1903.03427.
Hancock, G. J.
1953
The self-propulsion of microscopic organisms through liquids. Proc. R. Soc. Lond. Ser. A
217 (1128), 96–121.

Ishijima, S.
2011
Dynamics of flagellar force generated by a hyperactivated spermatozoon. Reproduction
142 (3), 409–415.

Ishimoto, K., Gadêlha, H., Gaffney, E. A., Smith, D. J. & Kirkman-Brown, J.
2017
Coarse-graining the fluid flow around a human sperm. Phys. Rev. Lett.
118 (12), 124501.

Ishimoto, K. & Gaffney, E. A.
2015
Fluid flow and sperm guidance: a simulation study of hydrodynamic sperm rheotaxis. J. R. Soc. Interface
12 (106), 20150172.

Ishimoto, K. & Gaffney, E. A.
2016
Mechanical tuning of mammalian sperm behaviour by hyperactivation, rheology and substrate adhesion: a numerical exploration. J. R. Soc. Interface
13 (124), 20160633.

Ishimoto, K. & Gaffney, E. A.
2018
An elastohydrodynamical simulation study of filament and spermatozoan swimming driven by internal couples. IMA J. Appl. Maths
83 (4), 655–679.

Johnson, R. E. & Brokaw, C. J.
1979
Flagellar hydrodynamics. A comparison between resistive-force theory and slender-body theory. Biophys. J.
25 (1), 113–127.

Katz, D. F., Blake, J. R. & Paveri-Fontana, S. L.
1975
On the movement of slender bodies near plane boundaries at low Reynolds number. J. Fluid Mech.
72 (03), 529–540.

Lauga, E., DiLuzio, W. R., Whitesides, G. M. & Stone, H. A.
2006
Swimming in circles: motion of bacteria near solid boundaries. Biophys. J.
90 (2), 400–412.

Liu, Y., Chakrabarti, B., Saintillan, D., Lindner, A. & du Roure, O.
2018
Morphological transitions of elastic filaments in shear flow. Proc. Natl Acad. Sci. USA
115 (38), 9438–9443.

Moreau, C., Giraldi, L. & Gadêlha, H.
2018
The asymptotic coarse-graining formulation of slender-rods, bio-filaments and flagella. J. R. Soc. Interface
15 (144), 20180235.

Nag, S. & Resnick, A.
2017
Biophysics and biofluid dynamics of primary cilia: evidence for and against the flow-sensing function. Am. J. Physiol.-Renal Physiol.
313 (3), F706–F720.

Nosrati, R., Driouchi, A., Yip, C. M. & Sinton, D.
2015
Two-dimensional slither swimming of sperm within a micrometre of a surface. Nat. Commun.
6 (1), 8703.

Ohmuro, J. & Ishijima, S.
2006
Hyperactivation is the mode conversion from constant-curvature beating to constant-frequency beating under a constant rate of microtubule sliding. Mol. Reproduction Dev.
73 (11), 1412–1421.

Olson, S. D., Lim, S. & Cortez, R.
2013
Modeling the dynamics of an elastic rod with intrinsic curvature and twist using a regularized Stokes formulation. J. Comput. Phys.
238, 169–187.

Ooi, E. H., Smith, D. J., Gadelha, H., Gaffney, E. A. & Kirkman-Brown, J.
2014
The mechanics of hyperactivation in adhered human sperm. R. Soc. Open Sci.
1 (2), 140230.

Pozrikidis, C.
2010
Shear flow over cylindrical rods attached to a substrate. J. Fluids Struct.
26 (3), 393–405.

Pozrikidis, C.
2011
Shear flow past slender elastic rods attached to a plane. Intl J. Solids Struct.
48 (1), 137–143.

Ramia, M., Tullock, D. L. & Phan-Thien, N.
1993
The role of hydrodynamic interaction in the locomotion of microorganisms. Biophys. J.
65 (2), 755–778.

Riedel-Kruse, I. H. & Hilfinger, A.
2007
How molecular motors shape the flagellar beat. HFSP J.
1 (3), 192–208.

Roper, M., Dreyfus, R., Baudry, J., Fermigier, M., Bibette, J. & Stone, H. A.
2006
On the dynamics of magnetically driven elastic filaments. J. Fluid Mech.
554, 167–190.

du Roure, O., Lindner, A., Nazockdast, E. N. & Shelley, M. J.
2019
Dynamics of flexible fibers in viscous flows and fluids. Annu. Rev. Fluid Mech.
51 (1), 539–572.

Schulman, R. D., Backholm, M., Ryu, W. S. & Dalnoki-Veress, K.
2014
Undulatory microswimming near solid boundaries. Phys. Fluids
26 (10), 101902.

Shampine, L. F. & Reichelt, M. W.
1997
The MATLAB ODE Suite. SIAM J. Sci. Comput.
18 (1), 1–22.

Shum, H., Tripathi, A., Yeomans, J. M. & Balazs, A. C.
2013
Active ciliated surfaces expel model swimmers. Langmuir
29 (41), 12770–12776.

Simons, J., Olson, S., Cortez, R. & Fauci, L.
2014
The dynamics of sperm detachment from epithelium in a coupled fluid-biochemical model of hyperactivated motility. J. Theor. Biol.
354, 81–94.

Smith, D. J.
2009
A boundary element regularized Stokeslet method applied to cilia- and flagella-driven flow. Proc. R. Soc. A
465 (2112), 3605–3626.

Smith, D. J., Gaffney, E. A., Blake, J. R. & Kirkman-Brown, J. C.
2009
Human sperm accumulation near surfaces: a simulation study. J. Fluid Mech.
621, 289–320.

Smith, D. J., Montenegro-Johnson, T. D. & Lopes, S. S.
2019
Symmetry-breaking cilia-driven flow in embryogenesis. Annu. Rev. Fluid Mech.
51 (1), 105–128.

Sznitman, J., Shen, X., Sznitman, R. & Arratia, P. E.
2010
Propulsive force measurements and flow behavior of undulatory swimmers at low Reynolds number. Phys. Fluids
22 (12), 121901.

Tornberg, A. K. & Shelley, M. J.
2004
Simulating the dynamics and interactions of flexible fibers in Stokes flows. J. Comput. Phys.
196 (1), 8–40.

Utada, A. S., Bennett, R. R., Fong, J. C. N., Gibiansky, M. L., Yildiz, F. H., Golestanian, R. & Wong, G. C. L.
2014
Vibrio cholerae use pili and flagella synergistically to effect motility switching and conditional surface attachment. Nat. Commun.
5 (1), 4913.

Yonekura, K., Maki-Yonekura, S. & Namba, K.
2003
Complete atomic model of the bacterial flagellar filament by electron cryomicroscopy. Nature
424 (6949), 643–650.