Skip to main content Accessibility help
×
Home

A fate-alternating transitional regime in contracting liquid filaments

  • F. Wang (a1), F. P. Contò (a1), N. Naz (a1), J. R. Castrejón-Pita (a1), A. A. Castrejón-Pita (a2), C. G. Bailey (a1), W. Wang (a1), J. J. Feng (a3) and Y. Sui (a1)...

Abstract

The fate of a contracting liquid filament depends on the Ohnesorge number ( $Oh$ ), the initial aspect ratio ( $\unicode[STIX]{x1D6E4}$ ) and surface perturbation. Generally, it is believed that there exists a critical aspect ratio $\unicode[STIX]{x1D6E4}_{c}(Oh)$ such that longer filaments break up and shorter ones recoil into a single drop. Through computational and experimental studies, we report a transitional regime for filaments with a broad range of intermediate aspect ratios, where there exist multiple $\unicode[STIX]{x1D6E4}_{c}$ thresholds at which a novel breakup mode alternates with no-break mode. We develop a simple model considering the superposition of capillary waves, which can predict the complicated new phase diagram. In this model, the breakup results from constructive interference between the capillary waves that originate from the ends of the filament.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      A fate-alternating transitional regime in contracting liquid filaments
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      A fate-alternating transitional regime in contracting liquid filaments
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      A fate-alternating transitional regime in contracting liquid filaments
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Email address for correspondence: y.sui@qmul.ac.uk

References

Hide All
Castrejón-Pita, A. A., Castrejón-Pita, J. R. & Hutchings, I. M. 2012 Breakup of liquid filaments. Phys. Rev. Lett. 108 (7), 074506.
Castrejón-Pita, J. R., Morrison, N. F., Harlen, O. G., Martin, G. D. & Hutchings, I. M. 2011 Experiments and Lagrangian simulations on the formation of droplets in drop-on-demand mode. Phys. Rev. E 83 (3), 036306.
Chen, A. U., Notz, P. K. & Basaran, O. A. 2002 Computational and experimental analysis of pinch-off and scaling. Phys. Rev. Lett. 88 (17), 174501.
Ding, H., Li, E. Q., Zhang, F. H., Sui, Y., Spelt, P. D. M. & Thoroddsen, S. T. 2012 Propagation of capillary waves and ejection of small droplets in rapid droplet spreading. J. Fluid Mech. 697, 92114.
Dong, H., Carr, W. W. & Morris, J. F. 2006 An experimental study of drop-on-demand drop formation. Phys. Fluids 18 (7), 072102.
Driessen, T., Jeurissen, R., Wijshoff, H., Toschi, F. & Lohse, D. 2013 Stability of viscous long liquid filaments. Phys. Fluids 25 (6), 062109.
Eggers, J. & Fontelos, M. A. 2005 Isolated inertialess drops cannot break up. J. Fluid Mech. 530, 177180.
Eggers, J. & Villermaux, E. 2008 Physics of liquid jets. Rep. Prog. Phys. 71 (3), 036601.
Hartnett, C. A., Mahady, K., Fowlkes, J. D., Afkhami, S., Kondic, L. & Rack, P. D. 2015 Instability of nano- and microscale liquid metal filaments: transition from single droplet collapse to multidroplet breakup. Langmuir 31 (50), 1360913617.
Hoepffner, J. & Paré, G. 2013 Recoil of a liquid filament: escape from pinch-off through creation of a vortex ring. J. Fluid Mech. 734, 183197.
van Hoeve, W., Gekle, S., Snoeijer, J. H., Versluis, M., Brenner, M. P. & Lohse, D. 2010 Breakup of diminutive Rayleigh jets. Phys. Fluids 22 (12), 122003.
Keller, J. B. 1983 Breaking of liquid films and threads. Phys. Fluids 26 (12), 34513453.
Keller, J. B., King, A. & Ting, L. 1995 Blob formation. Phys. Fluids 7 (1), 226228.
Lefebvre, A. H. & McDonell, V. G. 2017 Atomization and Sprays. CRC Press.
Notz, P. K. & Basaran, O. A. 2004 Dynamics and breakup of a contracting liquid filament. J. Fluid Mech. 512, 223256.
Schulkes, R. M. S. M. 1996 The contraction of liquid filaments. J. Fluid Mech. 309, 277300.
Sierou, A. & Lister, J. R. 2004 Self-similar recoil of inviscid drops. Phys. Fluids 16 (5), 13791394.
Song, M. & Tryggvason, G. 1999 The formation of thick borders on an initially stationary fluid sheet. Phys. Fluids 11 (9), 24872493.
Squires, T. M. & Quake, S. R. 2005 Microfluidics: fluid physics at the nanoliter scale. Rev. Mod. Phys. 77 (3), 9771026.
Stone, H. A., Bentley, B. J. & Leal, L. G. 1986 Experimental study of transient effects in the breakup of viscous drops. J. Fluid Mech. 173 (1), 131158.
Stone, H. A. & Leal, L. G. 1989 Relaxation and breakup of an initially extended drop in an otherwise quiescent fluid. J. Fluid Mech. 198, 399427.
Stone, H. A., Stroock, A. D. & Ajdari, A. 2004 Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu. Rev. Fluid Mech. 36, 381411.
Sui, Y. & Spelt, P. D. M. 2013 Validation and modification of asymptotic analysis of slow and rapid droplet spreading by numerical simulation. J. Fluid Mech. 715, 283313.
Sui, Y. & Spelt, P. D. M. 2015 Non-isothermal droplet spreading/dewetting and its reversal. J. Fluid Mech. 776, 7495.
Veron, F., Hopkins, C., Harrison, E. L. & Mueller, J. A. 2012 Sea spray spume droplet production in high wind speeds. Geophys. Res. Lett. 39 (16), L16602.
Weber, C. 1931 Zum zerfall eines flüssigkeitsstrahles. Z. Angew. Math. Mech. 11 (2), 136154.
Wijshoff, H. 2010 The dynamics of the piezo inkjet printhead operation. Phys. Rep. 491 (4–5), 77177.
Xu, Q. & Basaran, O. A. 2007 Computational analysis of drop-on-demand drop formation. Phys. Fluids 19 (10), 102111.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed