Skip to main content Accessibility help
×
Home

Fast equilibration dynamics of viscous particle-laden flow in an inclined channel

  • Jeffrey Wong (a1) (a2), Michael Lindstrom (a2) and Andrea L. Bertozzi (a2) (a3)

Abstract

A viscous suspension of negatively buoyant particles released into a wide, open channel on an incline will stratify in the normal direction as it flows. We model the early dynamics of this stratification under the effects of sedimentation and shear-induced migration. Prior work focuses on the behaviour after equilibration where the bulk suspension either separates into two distinct fronts (settled) or forms a single, particle-laden front (ridged), depending on whether the initial concentration of particles exceeds a critical threshold. From past experiments, it is also clear that this equilibration time scale grows considerably near the critical concentration. This paper models the approach to equilibrium. We present a theory of the dramatic growth in this equilibration time when the mixture concentration is near the critical value, where the balance between settling and shear-induced resuspension reverses.

Copyright

Corresponding author

Email address for correspondence: jtwong@math.duke.edu

References

Hide All
Abousnina, R. M., Manalo, A., Shiau, J. & Lokuge, W. 2015 Effects of light crude oil contamination on the physical and mechanical properties of fine sand. Intl J. Soil Sedim. Contam. 24 (8), 833845.
Arnold, D. J., Stokes, Y. M. & Green, J. E. F. 2015 Thin-film flow in helically-wound rectangular channels of arbitrary torsion and curvature. J. Fluid Mech. 764, 7694.
Berres, S., Bürger, R. & Tory, E. M. 2005 Applications of polydisperse sedimentation models. Chem. Engng J. 111 (2-3), 105117.
Boyer, F., Pouliquen, O. & Guazzelli, É. 2011 Dense suspensions in rotating-rod flows: normal stresses and particle migration. J. Fluid Mech. 686, 525.
Chen, Y., Malambri, F. & Lee, S. 2018 Viscous fingering of a draining suspension. Phys. Rev. Fluids 3 (9), 094001.
Cook, B. P., Bertozzi, A. L. & Hosoi, A. E. 2008 Shock solutions for particle-laden thin films. SIAM J. Appl. Maths 68 (3), 760783.
Dbouk, T., Lobry, L. & Lemaire, E. 2013 Normal stresses in concentrated non-Brownian suspensions. J. Fluid Mech. 715, 239272.
Delannay, R., Valance, A., Mangeney, A. & Richard, P. 2017 Granular and particle-laden flows: from laboratory experiments to field observations. J. Phys. D: Appl. Phys. 50 (5), 053001.
Huppert, H. E. 1982 Flow and instability of a viscous current down a slope. Nature 300 (5891), 427429.
Katz, O. & Aharonov, E. 2006 Landslides in vibrating sand box: What controls types of slope failure and frequency magnitude relations? Earth Planet. Sci. Lett. 247 (3–4), 280294.
Lareo, C., Fryer, P. J. & Barigou, M. 1997 The fluid mechanics of two-phase solid–liquid food flows: a review. Food Bioprod. Process. 75 (2), 73105.
Lee, S., Stokes, Y. & Bertozzi, A. L. 2014 Behavior of a particle-laden flow in a spiral channel. Phys. Fluids 26 (4), 16611673.
Leighton, D. & Acrivos, A. 1987 Shear-induced migration of particles in concentrated suspensions. J. Fluid Mech. 181, 415439.
Leonardi, A.2015 Numerical simulation of debris flow and interaction between flow and obstacle via dem. PhD thesis, ETH Zurich.
Miller, R. M. & Morris, J. F. 2006 Normal stress-driven migration and axial development in pressure-driven flow of concentrated suspensions. J. Non-Newtonian Fluid Mech. 135 (2), 149165.
Morris, J. F. & Boulay, F. 1999 Curvilinear flows of noncolloidal suspensions: the role of normal stresses. J. Rheol. 43 (5), 12131237.
Murisic, N., Ho, J., Hu, V., Latterman, P., Koch, T., Lin, K., Mata, M. & Bertozzi, A. L. 2011 Particle-laden viscous thin-film flows on an incline: experiments compared with an equilibrium theory based on shear-induced migration and particle settling. Physica D 240 (20), 16611673.
Murisic, N., Pausader, B., Peschka, D. & Bertozzi, A. L. 2013 Dynamics of particle settling and resuspension in viscous liquid films. J. Fluid Mech. 717, 203231.
Nott, P. R., Guazzelli, E. & Pouliquen, O. 2011 The suspension balance model revisited. Phys. Fluids 23 (4), 043304.
Oron, A., Davis, S. H. & Bankoff, S. G. 1997 Long-scale evolution of thin liquid films. Rev. Mod. Phys. 69 (3), 931980.
Ramachandran, A. & Leighton, D. T. 2008 The influence of secondary flows induced by normal stress differences on the shear-induced migration of particles in concentrated suspensions. J. Fluid Mech. 603, 207243.
Taylor, G. I. 1954 The dispersion of matter in turbulent flow through a pipe. Proc. R. Soc. Lond. A 223 (1155), 446468.
Taylor, J. E., Van Damme, I., Johns, M. L., Routh, A. F. & Wilson, D. I. 2009 Shear rheology of molten crumb chocolate. J. Food Sci. 74 (2), E55E61.
Timberlake, B. D. & Morris, J. F. 2005 Particle migration and free-surface topography in inclined plane flow of a suspension. J. Fluid Mech. 538, 309341.
Wang, L. & Bertozzi, A. L. 2014 Shock solutions for high concentration particle-laden thin films. SIAM J. Appl. Maths 74 (2), 322344.
Ward, T., Wey, C., Glidden, R., Hosoi, A. E. & Bertozzi, A. L. 2009 Experimental study of gravitation effects in the flow of a particle-laden thin film on an inclined plane. Phys. Fluids 21 (8), 083305.
Zettl, A. 2005 Sturm-Liouville Theory. American Mathematical Society.
Zhou, J., Dupuy, B., Bertozzi, A. L. & Hosoi, A. E. 2005 Theory for shock dynamics in particle-laden thin films. Phys. Rev. Lett. 94 (11), 117803.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Fast equilibration dynamics of viscous particle-laden flow in an inclined channel

  • Jeffrey Wong (a1) (a2), Michael Lindstrom (a2) and Andrea L. Bertozzi (a2) (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed