Ahamadi, M. & Harlen, O. G.
2008
A Lagrangian finite element method for simulation of a suspension under planar extensional flow. J. Comput. Phys.
227, 7543–7560.

Astarita, G. & Marucci, G.
1974
Principles of Non-Newtonian Fluid Mechanics. McGraw-Hill.

Barnes, H. A., Hutton, J. F. & Walters, K.
1989
An Introduction to Rheology. Elsevier.

Barthés-Biesel, D. & Acrivos, A.
1973a
Deformation and burst of a liquid droplet freely suspended in a linear shear field. J. Fluid Mech.
61, 1–22.

Barthés-Biesel, D. & Acrivos, A.
1973b
Rheology of suspensions and its relation to phenomenological theories for non-Newtonian fluids. Intl J. Multiphase Flow
1, 1–24.

Batchelor, G. K.
1970
The stress system in a suspension of force-free particles. J. Fluid Mech.
41, 545–570.

Bentley, B. J. & Leal, L. G.
1986
A computer-controlled four-roll mill for investigations of particle and drop dynamics in two-dimensional linear shear flows. J. Fluid Mech.
167, 219–240.

Cristini, V., Bławzdziewicz, J. & Loewenberg, M.
2001
An adaptive mesh algorithm for evolving surfaces: simulations of drop breakup and coalescence. J. Comput. Phys.
168, 445–463.

Cristini, V., Guido, S., Alfani, A., Bławzdziewicz, J. & Loewenberg, M.
2003
Drop breakup and fragment size distribution in shear flow. J. Rheol.
47, 1283–1298.

Derkach, S. R.
2009
Rheology of emulsions. Adv. Colloid Interface Sci.
151, 1–23.

Frankel, N. A. & Acrivos, A.
1970
The constitutive equation for a dilute emulsion. J. Fluid Mech.
44, 65–78.

Golemanov, K., Tcholakova, S., Denkov, N. D., Ananthapadmanabhan, K. P. & Lips, A.
2008
Breakup of bubbles and drops in steadily sheared foams and concentrated emulsions. Phys. Rev. E
78, 051405.

Hand, G. L.
1962
A theory of anisotropic fluids. J. Fluid Mech.
13, 33–46.

Hansen, J. P. & McDonald, I. R.
1976
Theory of Simple Liquids. Academic.

Hasimoto, H.
1959
On the periodic fundamental solutions of the Stokes equations and their application to viscous flow past a cubic array of spheres. J. Fluid Mech.
5, 317–328.

Hinch, E. G. & Leal, L. G.
1975
Constitutive equations in suspension mechanics. Part 1. General formulation. J. Fluid Mech.
71, 481–495.

Hinch, E. G. & Leal, L. G.
1976
Constitutive equations in suspension mechanics. Part 2. Approximate forms for a suspension of rigid particles affected by Brownian rotations. J. Fluid Mech.
76, 187–208.

Hoover, W. G. & Ree, F. H.
1968
Melting transition and communal entropy for hard spheres. J. Chem. Phys.
49, 3609–3617.

Hunt, A., Bernardi, S. & Todd, B. D.
2010
A new algorithm for extended nonequilibrium molecular dynamics simulations of mixed flow. J. Chem. Phys.
133, 154116.

Jansen, K. M. B., Agterof, G. M. & Mellema, J.
2001
Droplet breakup in concentrated emulsions. J. Rheol.
45, 227–236.

Kennedy, M. R., Pozrikidis, C. & Skalak, R.
1994
Motion and deformation of liquid drops, and the rheology of dilute emulsions in simple shear flow. Comput. Fluids
23, 251–278.

Kraynik, A. M. & Reinelt, D. A.
1992
Extensional motions of spatially periodic lattices. Intl J. Multiphase Flow
18, 1045–1059.

Loewenberg, M.
1998
Numerical simulation of concentrated emulsion flows. Trans. ASME: J. Fluids Engng
120, 824–832.

Loewenberg, M. & Hinch, E. J.
1996
Numerical simulation of a concentrated emulsion in shear flow. J. Fluid Mech.
321, 395–419.

Martin, R., Zinchenko, A. & Davis, R.
2014
A generalized Oldroyd’s model for non-Newtonian liquids with applications to a dilute emulsion of deformable drops. J. Rheol.
58, 759–777.

Oldroyd, J. G.
1958
Non-Newtonian effects in steady motion of some idealized elastico-viscous liquids. Proc. R. Soc. Lond. A
245, 278–297.

Proudman, I. & Pearson, J. R. A.
1957
Expansions at small Reynolds numbers for the flow past a sphere and a circular cylinder. J. Fluid Mech.
2, 237–262.

Rallison, J. M.
1981
A numerical study of the deformation and burst of a viscous drop in general shear flows. J. Fluid Mech.
109, 465–482.

Rallison, J. M.
1984
The deformation of small viscous drops and bubbles in shear flows. Annu. Rev. Fluid Mech.
16, 45–66.

Rivlin, R. S. & Ericksen, J. L.
1955
Stress-deformation relations for isotropic materials. Arch. Rat. Mech. Anal.
4, 323–425.

Rózanska, S., Rózanski, J., Ochowiak, M. & Mitkowski, P. T.
2014
Extensional viscosity measurements of concentrated emulsions with the use of the opposed nozzles device. Braz. J. Chem. Engng
31, 47–55.

Schowalter, W. R., Chaffey, C. E. & Brenner, H.
1968
Rheological behavior of a dilute emulsion. J. Colloid Interface Sci.
26, 152–160.

Van Dyke, M.
1967
Perturbation Methods in Fluid Mechanics. Academic.

Vlahovska, P. M., Loewenberg, M. & Bławzdziewicz, J.
2005
Deformation of a surfactant-covered drop in a linear flow. Phys. Fluids
17, 103103.

Vlahovska, P. M., Bławzdziewicz, J. & Loewenberg, M.
2009
Small-deformation theory for a surfactant-covered drop in linear flows. J. Fluid Mech.
624, 293–337.

Zinchenko, A. Z. & Davis, R. H.
2000
An efficient algorithm for hydrodynamical interaction of many deformable drops. J. Comput. Phys.
157, 539–587.

Zinchenko, A. Z. & Davis, R. H.
2002
Shear flow of highly concentrated emulsions of deformable drops by numerical simulations. J. Fluid Mech.
455, 21–62.

Zinchenko, A. Z. & Davis, R. H.
2003
Large-scale simulations of concentrated emulsion flows. Phil. Trans. R. Soc. Lond. A
361, 813–845.

Zinchenko, A. Z. & Davis, R. H.
2004
Hydrodynamical interaction of deformable drops. In Emulsions: Structure Stability and Interactions (ed. Petsev, D. N.), pp. 391–447. Elsevier.

Zinchenko, A. Z. & Davis, R. H.
2005
A multipole-accelerated algorithm for close interaction of slightly deformable drops. J. Comput. Phys.
207, 695–735.

Zinchenko, A. Z. & Davis, R. H.
2006
A boundary-integral study of a drop squeezing through interparticle constrictions. J. Fluid Mech.
564, 227–266.

Zinchenko, A. Z. & Davis, R. H.
2008
Algorithm for direct numerical simulation of emulsion flow through a granular material. J. Comput. Phys.
227, 7841–7888.

Zinchenko, A. Z. & Davis, R. H.
2013
Emulsion flow through a packed bed with multiple drop breakup. J. Fluid Mech.
725, 611–663.

Zinchenko, A. Z., Rother, M. A. & Davis, R. H.
1997
A novel boundary-integral algorithm for viscous interaction of deformable drops. Phys. Fluids
9, 1493–1511.