Skip to main content Accessibility help

Experiments on a turbulent cylindrical wall jet

  • J. B. Starr (a1) (a2) and E. M. Sparrow (a2)


The investigation described here is an experimental study directed toward determining flow field and surface friction characteristics of a cylindrical wall jet. The flow configuration is obtained by placing a cylindrical rod along the axis of a converging nozzle. The flow field thus produced consists of a developing turbulent boundary layer co-existing with an outer fluid layer that mixes freely with quiescent surroundings. Direct measurements of fluid friction at the rod surface, performed with a hot-film element, revealed a significant effect of transverse surface curvature on the local friction factor. Velocity profiles at various axial stations exhibited similarity in the outer mixing layer, but not in the boundary layer adjacent to the surface. Representations of the velocity field in terms of law of the wall variables and defect-law variables revealed significant transverse curvature effects. The measured wall-jet velocity profiles could be satisfactorily represented in terms of a law of the wake, wherein the wake function depends on a transverse curvature parameter. In the outer mixing layer, the eddy viscosity data correspond closely to those of free jets.



Hide All
Bakke, P. 1957 An experimental investigation of a wall jet J. Fluid Mech. 2, 467.
Bradshaw, P. & Gee, M. T. 1960 Turbulent wall jets with and without an external stream. Aero. Res. Counc. Lond. R & M no. 3252.
Bradshaw, P. & Love, E. M. 1961 The normal impingement of a circular air jet on a flat surface. Aero Res. Counc. Lond. R & M no. 3205.
Brighton, J. A. & Jones, J. B. 1964 Fully developed turbulent flow in annuli J. Basic Engin. 86, 835.
Coles, D. 1956 The law of the wake in the turbulent boundary layer J. Fluid Mech. 1, 191.
Deissler, R. G. & Loeffer, A. L. 1959 Analysis of turbulent flow and heat transfer on a flat plate at high Mach numbers with variable fluid properties. NASA Rept. no. R-17.
Förthmann, E. 1934 Turbulent jet expansion. Ing. Arch. 5, 42; also NACA TM 789.
Glauert, M. B. 1956 The wall jet J. Fluid Mech. 1, 625.
Head, M. R. 1958 Entrainment in the turbulent boundary layer. Aero. Res. Counc. Lond. R & M 3152.
Jonsson, V. K. 1965 Experimental studies of turbulent flow phenomena in eccentric annuli. Ph.D. Thesis, University of Minnesota.
Klebanoff, P. S. & Diehl, Z. W. 1952 Some features of artificially thickened fully developed boundary layers with zero pressure gradient. NACA Rept. no. 1110.
Kruka, V. & Eskinazi, S. 1964 The wall jet in a moving stream J. Fluid Mech. 20, 555.
Lawrence, R. L. 1964 Velocity profiles from compressible wall jets AIAA J. 2, 574.
Ludwieg, H. 1950 Instrument for measuring the wall shearing stress of turbulent boundary layers. NACA TM 1284.
Mathieu, J. & Tailland, A. 1961 Étude d'n jet plan dirigé tangentiellement á une paroi C.R. Acad. Sci., Paris, 252, 3736.
Mathieu, J. & Tailland, A. 1963 Étude d'n jet plan dirigé tangentiellement á une paroi C.R. Acad. Sci., Paris, 256, 2768.
Myers, G. E., Schauer, J. J. & Eustis, R. H. 1963 Plane turbulent wall jet flow development and friction factor J. Basic Engin. 85, 47.
Reichardt, H. 1942 Gesetzmassigkeiten der freien Turbulenz. VDI-Forschungsheft, 414.
Schwarz, W. H. & Cosart, W. P. 1961 The two-dimensional turbulent wall jet J. Fluid Mech. 10, 481.
Sigalla, A. 1958 Measurement of skin friction in a plane turbulent wall jet J. R. Aero. Soc. 62, 873.
Spalding, D. B. 1965 A unified theory of friction, heat transfer and mass transfer in the turbulent boundary layer and wall jet. Aero. Res. Counc. Lond. Current Paper, no. 829.
Sparrow, E. M., Eckert, E. R. G. & Minkowycz, W. J. 1963 Heat transfer and skin friction for turbulent boundary layer flow longitudinal to a circular cylinder J. Appl. Mech. 30, 37.
Starr, J. B. 1966 An experimental investigation of a cylindrical turbulent wall jet. Ph.D. Thesis, University of Minnesota.
Townsend, A. A. 1956 The Structure of Turbulent Shear Flow. Cambridge University Press.
MathJax is a JavaScript display engine for mathematics. For more information see


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed