Skip to main content Accessibility help
×
Home

Experimental study on a sinusoidal air/SF $_{6}$ interface accelerated by a cylindrically converging shock

  • Fan Lei (a1), Juchun Ding (a1), Ting Si (a1), Zhigang Zhai (a1) and Xisheng Luo (a1)...

Abstract

Ritchmyer–Meshkov instability on an air/SF $_{6}$ interface is experimentally studied in a coaxial converging shock tube by a high-speed laser sheet imaging technique. An unperturbed case is first examined to obtain the characteristics of the converging shock and the shocked interface. For sinusoidal interfaces, the wave pattern and the interface morphology of the whole process are clearly observed. It is quantitatively found that the perturbation amplitude first decreases due to the shock compression, then experiences a rapid growth to a maximum value and finally drops quickly before the reshock. The reduction of growth rate is ascribed to the Rayleigh–Taylor stabilization caused by the interface deceleration motion that is present in the converging circumstance. It is noted that the influence of the wavenumber on the amplitude growth is very little before the reshock, but becomes significant after the reshock.

Copyright

Corresponding author

Email address for correspondence: xluo@ustc.edu.cn

References

Hide All
Bell, G. I.1951 Taylor instability on cylinders and spheres in the small amplitude approximation. Tech. Rep. LA-1321. Los Alamos Scientific Laboratory.
Biamino, L., Jourdan, G., Mariani, C., Houas, L., Vandenboomgaerde, M. & Souffland, D. 2015 On the possibility of studying the converging Richtmyer–Meshkov instability in a conventional shock tube. Exp. Fluids 56 (2), 15.
Dimotakis, P. E. & Samtaney, R. 2006 Planar shock cylindrical focusing by a perfect-gas lens. Phys. Fluids 18, 031705.
Ding, J., Si, T., Yang, J., Lu, X., Zhai, Z. & Luo, X. 2017 Shock tube experiments on converging Richtmyer–Meshkov instability. Phys. Rev. Lett. 119, 014501.
Fincke, J. R., Lanier, N. E., Batha, S. H., Hueckstaedt, R. M., Magelssen, G. R., Rothman, S. D., Parker, K. W. & Horsfield, C. J. 2004 Postponement of saturation of the Richtmyer–Meshkov instability in a convergent geometry. Phys. Rev. Lett. 93, 115003.
Guderley, G. 1942 Starke kugelige und zylindrische Verdichtungsstö𝛽e in der Nähe des Kugelmittelpunktes bzw. der Zylinderachse. Luftfahrtforschung 19, 302312.
Hosseini, S. H. R., Ondera, O. & Takayama, K. 2000 Characteristics of an annular vertical diaphragmless shock tube. Shock Waves 10, 151158.
Hosseini, S. H. R. & Takayama, K. 2005 Experimental study of Richtmyer–Meshkov instability induced by cylindrical shock waves. Phys. Fluids 17, 084101.
Kjellander, M., Tillmark, N. & Apazidis, N. 2011 Experimental determination of self-similarity constant for converging cylindrical shocks. Phys. Fluids 23 (11), 116103.
Lanier, N. E., Barnes, C. W., Batha, S. H., Day, R. D., Magelssen, G. R., Scott, J. M., Dunne, A. M., Parker, K. W. & Rothman, S. D. 2003 Multimode seeded Richtmyer–Meshkov mixing in a convergent, compressible, miscible plasma system. Phys. Plasmas 10, 18161821.
Lindl, J., Landen, O., Edwards, J., Moses, E. & Team, N. 2014 Review of the national ignition campaign 2009–2012. Phys. Plasmas 21, 020501.
Lombardini, M., Pullin, D. I. & Meiron, D. I. 2014 Turbulent mixing driven by spherical implosions. Part 1. Flow description and mixing-layer growth. J. Fluid Mech. 748, 85112.
Luo, X., Ding, J., Wang, M., Zhai, Z. & Si, T. 2015 A semi-annular shock tube for studying cylindrically converging Richtmyer–Meshkov instability. Phys. Fluids 27 (9), 091702.
Meshkov, E. E. 1969 Instability of the interface of two gases accelerated by a shock wave. Fluid Dyn. 4, 101104.
Mikaelian, K. O. 2005 Rayleigh–Taylor and Richtmyer–Meshkov instabilities and mixing in stratified cylindrical shells. Phys. Fluids 17, 094105.
Perry, R. W. & Kantrowitz, A. 1951 The production and stability of converging shock waves. J. Appl. Phys. 22, 878886.
Plesset, M. S. 1954 On the stability of fluid flows with spherical symmetry. J. Appl. Phys. 25, 9698.
Ponchaut, N. F., Hornung, H. G., Pullin, D. I. & Mouton, C. A. 2006 On imploding cylindrical and spherical shock waves in a perfect gas. J. Fluid Mech. 560, 103122.
Remington, B. A., Kane, J., Drake, R. P., Glendinning, S. G., Estabrook, K., London, R., Castor, J., Wallace, R. J., Arnett, D., Liang, E. et al. 1997 Supernova hydrodynamics experiments on the Nova laser. Phys. Plasmas 4 (5), 19942003.
Richtmyer, R. D. 1960 Taylor instability in shock acceleration of compressible fluids. Commun. Pure Appl. Maths 13, 297319.
Si, T., Long, T., Zhai, Z. & Luo, X. 2015 Experimental investigation of cylindrical converging shock waves interacting with a polygonal heavy gas cylinder. J. Fluid Mech. 784, 225251.
Si, T., Zhai, Z. & Luo, X. 2014 Experimental study of Richtmyer–Meshkov instability in a cylindrical converging shock tube. Laser Part. Beams 32 (3), 343351.
Takayama, K., Kleine, H. & Groenig, H. 1987 An experimental investigation of the stability of converging cylindrical shock waves in air. Exp. Fluids 5 (5), 315322.
Wang, X., Yang, D., Wu, J. & Luo, X. 2015 Interaction of a weak shock wave with a discontinuous heavy-gas cylinder. Phys. Fluids 27, 064104.
Zhai, Z., Liu, C., Qin, F., Yang, J. & Luo, X. 2010 Generation of cylindrical converging shock waves based on shock dynamics theory. Phys. Fluids 22, 041701.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed