Skip to main content Accessibility help

Experimental study of the stability and dynamics of a two-dimensional ideal vortex under external strain

  • N. C. Hurst (a1), J. R. Danielson (a1), D. H. E. Dubin (a1) and C. M. Surko (a1)


The dynamics of two-dimensional (2-D) ideal fluid vortices is studied experimentally in the presence of an irrotational strain flow. Laboratory experiments are conducted using strongly magnetized pure electron plasmas, a technique which is made possible by the isomorphism between the drift–Poisson equations describing plasma dynamics transverse to the field and the 2-D Euler equations describing an ideal fluid. The electron plasma system provides an excellent opportunity to study the dynamics of a 2-D Euler fluid due to weak dissipation and weak 3-D effects, simple diagnosis and precise control. The plasma confinement apparatus used here was designed specifically to study vortex dynamics under the influence of external flow by applying boundary conditions in two dimensions. Additionally, vortex-in-cell simulations are carried out to complement the experimental results and to extend the parameter range of the studies. It is shown that the global dynamics of a quasi-flat vorticity profile is in good quantitative agreement with the theory of a piecewise-constant elliptical patch of vorticity, including the equilibria, dynamical orbits and stability properties. Deviations from the elliptical patch theory are observed for non-flat vorticity profiles; they include inviscid damping of the orbits and modified stability limits. The dependence of these phenomena on the flatness of the initial profile is discussed. The relationship of these results to other theoretical, numerical and experimental studies is also discussed.


Corresponding author

Email address for correspondence:


Hide All
Adams, A., Chesler, P. M. & Liu, H. 2014 Holographic turbulence. Phys. Rev. Lett. 112, 151602.
Backhaus, E. Yu., Fajans, J. & Wurtele, J. S. 1999 Stability of highly asymmetric non-neutral plasmas. Phys. Plasmas 6 (1), 1930.
Balmforth, N. J., Smith, S. G. L. & Young, W. R. 2001 Disturbing vortices. J. Fluid Mech. 426, 95133.
Basdevant, C. & Philipovitch, T. 1994 On the validity of the ‘Weiss criterion’ in two-dimensional turbulence. Physica D 73, 1730.
Chen, F. F. 1984 Introduction to Plasma Physics and Controlled Fusion, 2nd edn. Plenum Press.
Chen, S., Maero, G. & Rome, M. 2017 Spectral analysis of forced turbulence in a non-neutral plasma. J. Plasma Phys. 83 (3), 705830303.
Chu, R., Wurtele, J. S., Notte, J., Peurrung, A. J. & Fajans, J. 1993 Pure electron plasmas in asymmetric traps. Phys. Fluids B 5 (7), 23782386.
Crosby, A., Johnson, E. R. & Morrison, P. J. 2013 Deformation of vortex patches by boundaries. Phys. Fluids 25, 023602.
Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. 2015 Plasma and trap-based techiques for science with positrons. Rev. Mod. Phys. 87 (1), 247306.
Driscoll, C. F. & Fine, K. S. 1990 Experiments on vortex dynamics in pure electron plasmas. Phys. Fluids B 2, 13591366.
Dritschel, D. G. 1989 Contour dynamics and contour surgery: numerical algorithms for extended, high-resolution modelling of vortex dynamics in two dimensional, inviscid, incompressible flows. Comput. Phys. Rep. 10, 77146.
Dritschel, D. G. 1990 The stability of elliptical vortices in an external straining flow. J. Fluid Mech. 210, 223261.
Dritschel, D. G. & Legras, B. 1993 Modeling oceanic and atmospheric vortices. Phys. Today 46 (3), 4451.
Dubin, D. H. E. 1998 Collisional transport in non-neutral plasmas. Phys. Plasmas 5 (5), 16881694.
Dubin, D. H. E. & O’Neil, T. M. 1999 Trapped nonneutral plasmas, liquids, and crystals (the thermal equilibrium states). Rev. Mod. Phys. 71 (1), 87172.
Durkin, D. & Fajans, J. 2000 Experiments on two-dimensional vortex patterns. Phys. Fluids 12 (2), 289293.
Eggleston, D. 1994 Experimental study of two-dimensional electron vortex dynamics in an applied irrotational shear flow. Phys. Plasmas. 1 (12), 38503856.
Fajans, J., Backhaus, E. Yu. & Gilson, E. 2000 Bifurcations in elliptical, asymmetric non-neutral plasmas. Phys. Plasmas 7 (10), 39293933.
Fine, K. S., Cass, A. C., Flynn, W. G. & Driscoll, C. F. 1995 Relaxation of 2d turbulence to vortex crystals. Phys. Rev. Lett. 75 (18), 32773280.
Godon, P. & Livio, M. 1999 Vortices in protoplanetary disks. Astrophys. J. 523 (1), 350356.
Goodman, J., Hou, T. Y. & Lowengrub, J. 1990 Convergence of the point vortex method for the 2-D Euler equations. In Communications on Pure and Applied Mathematics, Vol. XLIII, pp. 415430. John Wiley and Sons.
Haller, G. 2005 An objective definition of a vortex. J. Fluid Mech. 525, 126.
Hasegawa, A. & Mima, K. 1978 Pseudo-three-dimensional turbulence in magnetized nonuniform plasma. Phys. Fluids 21 (87), 8792.
Hua, B. L. & Klein, P. 1998 An exact criterion for the stirring properties of nearly two-dimensional turbulence. Physica D 113, 98110.
Hunt, J. C. R. & Carruthers, D. J. 1990 Rapid distortion theory and the ‘problems’ of turbulence. J. Fluid Mech. 212, 497532.
Hurst, N. C., Danielson, J. R., Dubin, D. H. E. & Surko, C. M. 2016 Evolution of a vortex in a strain flow. Phys. Rev. Lett. 117, 235001.
Hurst, N. C., Danielson, J. R. & Surko, C. M. 2018 An electron plasma experiment to study vortex dynamics subject to externally imposed flows. AIP Conf. Proc. 1928, 020007.
Kawai, Y., Kiwamoto, Y., Soga, Y. & Aoki, J. 2007 Turbulent cascade in vortex dynamics of magnetized pure electron plasmas. Phys. Rev. E 75, 066404.
Kida, S. 1981 Motion of an elliptic vortex in a uniform shear flow. J. Phys. Soc. Japan 50 (10), 35173520.
Kriesel, J. M. & Driscoll, C. F. 2000 Two regimes of asymmetry-induced transport in non-neutral plasmas. Phys. Rev. Lett. 85 (12), 25102513.
Kriesel, J. M. & Driscoll, C. F. 2001 Measurements of viscosity in pure-electron plasmas. Phys. Rev. Lett. 87 (13), 135003.
Legras, B., Dritschel, D. G. & Caillol, P. 2001 The erosion of a two-dimensional vortex in a background straining flow. J. Fluid Mech. 441, 369398.
Leonard, A. 1980 Vortex methods for flow simulation. J. Comput. Phys. 37 (3), 289335.
Lingevitch, J. F. & Bernoff, A. J. 1995 Distortion and evolution of a localized vortex in an irrotational flow. Phys. Fluids 7 (5), 10151026.
Lithwick, Y. 2009 Formation, survival, and destruction of vortices in accretion disks. Astrophys. J. 693 (1), 8596.
Majda, A. J. & Bertozzi, A. L. 2002 Vorticity and Incompressible Flow. Cambridge University Press.
Mariotti, A., Legras, B. & Dritschel, D. G. 1994 Vortex stripping and the erosion of coherent structures in two-dimensional flows. Phys. Fluids 6 (12), 39543962.
McWilliams, J. C. 1984 The emergence of isolated coherent vortices in turbulent flow. J. Fluid Mech. 146, 2143.
Meacham, S. P., Morrison, P. J. & Flierl, G. R. 1997 Hamiltonian moment reduction for describing vortices in shear. Phys. Fluids 9 (8), 23102328.
Melander, M. V., Zabusky, N. J. & Styczek, A. S. 1986 A moment model for vortex interactions of the two-dimensional euler equations. Part 1. Computational validation of a Hamiltonian elliptical representation. J. Fluid Mech. 167, 95115.
Mitchell, T. B. & Driscoll, C. F. 1996 Electron vortex orbits and merger. Phys. Fluids 8 (7), 18281841.
Mitchell, T. B. & Rossi, L. F. 2008 The evolution of Kirchoff elliptic vortices. Phys. Fluids 20, 054103.
Moffatt, H. K. 2001 The topology of scalar fields in 2D and 3D turbulence. In IUTAM Symposium on Geometry and Statistics of Turbulence (ed. Kambe, T., Nakano, T. & Miyauchi, T.), pp. 1322. Kluwer Academic Publishers.
Montgomery, D. & Turner, L. 1980 Two-dimensional electrostatic turbulence with variable density and pressure. Phys. Fluids 23 (2), 264268.
Moore, D. W. & Saffman, P. G. 1971 Structure of a line vortex in an imposed strain. In Aircraft Wake Turbulence and its Detection (ed. Rogers, M., Olsen, J. H. & Goldburg, A.), pp. 339354. Plenum Press.
Morrison, P. J. 1998 Hamiltonian description of the ideal fluid. Rev. Mod. Phys. 70 (2), 467521.
Notte, J., Fajans, J., Chu, R. & Wurtele, J. S. 1993 Experimental breaking of an adiabatic invariant. Phys. Rev. Lett. 70 (25), 39003903.
Okubo, A. 1970 Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as convergences. Deep-Sea Res. Oceanographic Abstracts 17 (3), 445454.
O’Neil, T. M. 1980 Cooling of a pure electron plasma by cyclotron radiation. Phys. Fluids 23 (4), 725731.
O’Neil, T. M. 1999 Trapped plasmas with a single sign of charge (from Coulomb crystals to 2d turbulence and vortex dynamics). Phys. Today 52 (24), 2430.
Peurrung, A. J. & Fajans, J. 1993 A limitation to the analogy between pure electron plasmas and two-dimensional inviscid fluids. Phys. Fluids B 5 (12), 42954298.
Polvani, L. M. & Flierl, G. R. 1986 Generalized kirchoff vortices. Phys. Fluids 29, 23762379.
Saffman, P. G. 1992 Vortex Dynamics. Cambridge University Press.
Schecter, D. A., Dubin, D. H. E., Cass, A. C., Driscoll, C. F., Lansky, I. M. & O’Neil, T. M. 2000 Inviscid damping of asymmetries on a two-dimensional vortex. Phys. Fluids 12 (10), 23972412.
Soga, Y., Kiwamoto, Y., Sanpei, A. & Aoki, J. 2003 Merger and binary structure formation of two discrete vortices in a background vorticity distribution of a pure electron plasma. Phys. Plasmas 10, 39223926.
Tabeling, P. 2002 Two-dimensional turbulence: a physicist approach. Phys. Rep. 362, 162.
Terry, P. W. 2000 Suppression of turbulence and transport by sheared flow. Rev. Mod. Phys. 72 (1), 109165.
Trieling, R. R., Beckers, M. & Van Heijst, G. J. F. 1997 Dynamics of monopolar vortices in a strain flow. J. Fluid Mech. 345, 165201.
Turner, M. R. & Gilbert, A. D. 2008 Thresholds for the formation of satellites in two-dimensional vortices. J. Fluid Mech. 614, 381405.
Turner, M. R., Gilbert, A. D. & Bassom, A. P. 2008 Neutral modes of a two-dimensional vortex and their link to persistent cat’s eyes. Phys. Fluids 20, 021101.
Vanneste, J. & Young, W. R. 2010 On the energy of elliptical vortices. Phys. Fluids 22, 081701.
Voth, G. A., Haller, G. & Gollub, J. P. 2002 Experimental measurements of stretching fields in fluid mixing. Phys. Rev. Lett. 88 (25), 254501.
Weiss, J. 1991 The dynamics of enstrophy transfer in two-dimensional hydrodynamics. Physica D 48, 273294.
Zabusky, N. J. 1979 Contour dynamics for the euler equations in two dimensions. J. Comput. Phys. 30 (1), 96106.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed