Skip to main content Accessibility help
×
Home

Experimental study of particle trajectories below deep-water surface gravity wave groups

  • T. S. van den Bremer (a1), C. Whittaker (a2), R. Calvert (a1), A. Raby (a3) and P. H. Taylor (a4)...

Abstract

Owing to the interplay between the forward Stokes drift and the backward wave-induced Eulerian return flow, Lagrangian particles underneath surface gravity wave groups can follow different trajectories depending on their initial depth below the surface. The motion of particles near the free surface is dominated by the waves and their Stokes drift, whereas particles at large depths follow horseshoe-shaped trajectories dominated by the Eulerian return flow. For unidirectional wave groups, a small net displacement in the direction of travel of the group results near the surface, and is accompanied by a net particle displacement in the opposite direction at depth. For deep-water waves, we study these trajectories experimentally by means of particle tracking velocimetry in a two-dimensional flume. In doing so, we provide visual illustration of Lagrangian trajectories under groups, including the contributions of both the Stokes drift and the Eulerian return flow to both the horizontal and the vertical Lagrangian displacements. We compare our experimental results to leading-order solutions of the irrotational water wave equations, finding good agreement.

Copyright

Corresponding author

Email address for correspondence: ton.vandenbremer@eng.ox.ac.uk

References

Hide All
Andrews, D. G. & McIntyre, M. E. 1978 An exact theory of nonlinear waves on a Lagrangian-mean flow. J. Fluid Mech. 89, 609646.
Bagnold, R. A. 1947 Sand movement by waves: some small-scale experiments with sand of very low density. J. Inst. Civil Engng. 27 (4), 447469.
Belcher, S. E., Grant, A. L. M., Hanley, K. E., Fox-Kemper, B., Roekel, L. V., Sullivan, P. P., Large, W. G., Andy, A. B., Hines, A., Calvert, D. et al. 2012 A global perspective on Langmuir turbulence in the ocean surface boundary layer. Geophys. Res. Lett. 39 (18), L18605.
van den Bremer, T. S. & Breivik, Ø. 2017 Stokes drift. Phil. Trans. R. Soc. Lond. A 376, 20170104.
van den Bremer, T. S. & Taylor, P. H. 2015 Estimates of Lagrangian transport by surface gravity wave groups: the effects of finite depth and directionality. J. Geophys. Res. 120 (4), 27012722.
van den Bremer, T. S. & Taylor, P. H. 2016 Lagrangian transport for two-dimensional deep-water surface gravity wave groups. Proc. R. Soc. A 472, 20160159.
Bühler, O. 2014 Waves and Mean Flows, 2nd edn. Cambridge University Press.
Christensen, K. H. & Terrile, E. 2009 Drift and deformation of oil slicks due to surface waves. J. Fluid Mech. 620, 313332.
Craik, A. D. D. & Leibovich, S. 1976 A rational model for Langmuir circulations. J. Fluid Mech. 73 (3), 401426.
D’Asaro, E. A., Thomson, J., Shcherbina, A. Y., Harcourt, R. R., Cronin, M. F., Hemer, M. A. & Fox-Kemper, B. 2014 Quantifying upper ocean turbulence driven by surface waves. Geophys. Res. Lett. 41 (1), 102107.
Deike, L., Pizzo, N. & Melville, W. K. 2017 Lagrangian transport by breaking surface waves. J. Fluid Mech. 829, 364391.
DiBenedetto, M. H. & Ouellette, N. T. 2018 Preferential orientation of spheroidal particles in wavy flow. J. Fluid Mech. 856, 850869.
DiBenedetto, M. H., Ouellette, N. T. & Koseff, J. R. 2018 Transport of anisotropic particles under waves. J. Fluid Mech. 837, 320340.
Drivdal, M., Broström, G. & Christensen, K. H. 2014 Wave-induced mixing and transport of buoyant particles: application to the Statfjord A oil spill. Ocean Sci. 10 (6), 977991.
Eames, I. 2008 Settling of particles beneath water waves. J. Phys. Oceanogr. 38, 28462853.
Groeneweg, J. & Klopman, G. 1998 Changes of the mean velocity profiles in the combined wave-current motion described in a GLM formulation. J. Fluid Mech. 370, 271296.
Grue, J. & Kolaas, J. 2017 Experimental particle paths and drift velocity in steep waves at finite water depth. J. Fluid Mech. 810, R1.
Haney, S., Fox-Kemper, B., Julien, K. & Webb, A. 2015 Symmetric and geostrophic instabilities in the wave-forced ocean mixed layer. J. Phys. Oceanogr. 45 (12), 30333056.
Herbers, T. H. C. & Janssen, T. T. 2016 Lagrangian surface wave motion and Stokes drift fluctuations. J. Phys. Oceaonogr. 46 (4), 10091021.
Jones, C. E., Dagestad, K., Breivik, Ø., Holt, B., Röhrshrs, J., Christensen, K., Espeseth, M., Brekke, C. & Skrunes, S. 2016 Measurement and modelling of oil slick transport. J. Geophys. Res. 121 (10), 77597775.
Lebreton, L., Slat, B., Ferrari, F., Sainte-Rose, B., Aitken, J., Marthouse, R., Hajbane, S., Cunsolo, S., Schwarz, A., Levivier, A. et al. 2018 Evidence that the Great Pacific Garbage Patch is rapidly accumulating plastic. Sci. Rep. 8, 4666.
Longuet-Higgins, M. S. 1953 Mass transport in water waves. Phil. Trans. R. Soc. Lond. A 245, 535581.
Longuet-Higgins, M. S. & Stewart, R. W. 1962 Radiation stress and mass transport in gravity waves, with applications to ‘surf beats’. J. Fluid Mech. 13, 481504.
Longuet-Higgins, M. S. & Stewart, R. W. 1964 Radiation stresses in water waves; a physical discussion, with applications. Deep-Sea Res. 2, 529562.
McAllister, M. L., Adcock, T. A. A., Taylor, P. H. & van den Bremer, T. S. 2018 The set-down and set-up of directionally spread and crossing surface gravity wave groups. J. Fluid Mech. 835, 131169.
McIntyre, M. E. 1981 On the wave momentum myth. J. Fluid Mech. 106, 331347.
McIntyre, M. E. 1988 A note on the divergence effect and the Lagrangian-mean surface elevation in periodic water waves. J. Fluid Mech. 189, 235242.
McWilliams, J. C. 2016 Submesoscale currents in the ocean. Proc. R. Soc. Lond. A 472 (2189), 20160117.
McWilliams, J. C. & Restrepo, J. M. 1999 The wave-driven ocean circulation. J. Phys. Oceanogr. 29, 25232540.
McWilliams, J. N., Restrepo, J. M. & Lane, E. M. 2004 An asymptotic theory for the interaction of waves and currents in coastal waters. J. Fluid Mech. 511, 135178.
Mei, C. C., Liu, P. L. F. & Carter, T. G.1972 Mass transport in water waves. Tech. Rep. 146. MIT Rep. Ralph M. Parsons Lab. Water Resources Hydrodynamics.
Mellor, G. 2016 On theories dealing with the interaction of surface waves and ocean circulation. J. Geophys. Res. Oceans 121, 44744486.
Melville, W. K. & Rapp, R. 1988 The surface velocity field in steep and breaking waves. J. Fluid Mech. 189, 122.
Monismith, S. G., Cowen, E. A., Nepf, H. M., Magnaudet, J. & Thais, L. 2007 Laboratory observations of mean flows under surface gravity waves. J. Fluid Mech. 573, 131147.
Nokes, R. 2014 Streams 2.02: System Theory and Design. University of Canterbury.
Paprota, M., Sulisz, W. & Reda, A. 2016 Experimental study of wave-induced mass transport. J. Hydraul Res. 54 (4), 423434.
Pizzo, N. E. 2017 Surfing surface gravity waves. J. Fluid Mech. 823, 316328.
Pizzo, N. & Melville, W. 2013 Vortex generation by deep-water breaking waves. J. Fluid Mech. 734, 198218.
Röhrs, J., Christensen, K. H., Hole, L. R., Broström, G., Drivdal, M. & Sundby, S. 2012 Observation-based evaluation of surface wave effects on currents and trajectory forecasts. Ocean Dyn. 62 (10), 15191533.
Santamaria, F., Boffetta, F., Martins Afonso, M., Mazzino, A., Onorato, M. & Pugliese, D. 2013 Stokes drift for inertial particles transported by water waves. Europhys. Lett. 102 (1), 14003.
Schäffer, H. A. 1996 Second-order wavemaker theory for irregular waves. Ocean Engng 23, 4788.
Smith, J. A. 2006 Observed variability of ocean wave Stokes drift, and the Eulerian response to passing groups. J. Phys. Oceanogr. 36, 13811402.
Stokes, G. G. 1847 On the theory of oscillatory waves. Trans. Camb. Phil. Soc. 8, 441455.
Sullivan, P. P. & McWilliams, J. C. 2010 Dynamics of winds and currents coupled to surface waves. Annu. Rev. Fluid Mech. 42, 1942.
Swan, C. 1990 Convection within an experimental wave flume. J. Hydraul Res. 28, 273282.
Swan, C. & Sleath, J. F. A. 1990 A second approximation to the time-mean Lagrangian drift beneath progressive gravity waves. Ocean Engng 1, 6579.
Trinanes, J. A., Olascoaga, M. J., Goni, G. J., Maximenko, N. A., Griffin, D. A. & Hafner, J. 2016 Analysis of flight MH370 potential debris trajectories using ocean observations and numerical model results. J. Oper. Oceanogr. 9 (2), 126138.
Umeyama, M. 2012 Eulerian-Lagrangian analysis for particle velocities and trajectories in a pure wave motion using particle image velocimetry. Phil. Trans. R. Soc. A 370 (1964), 16871702.
Van Dyke, M. 1982 An Album of Fluid Motion. Parabolic Press.
Weber, J. E. H. 2011 Do we observe Gerstner waves in wave tank experiments? Wave Motion 48 (4), 301309.
Whittaker, C. N., Fitzgerald, C. J., Raby, A. C., Taylor, P. H., Orszaghova, J. & Borthwick, A. G. L. 2017 Optimisation of focused wave group runup on a plane beach. Coast. Engng 121, 4455.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed