Skip to main content Accessibility help

Experimental investigation of freely falling thin disks. Part 2. Transition of three-dimensional motion from zigzag to spiral

  • Cunbiao Lee (a1), Zhuang Su (a1), Hongjie Zhong (a1), Shiyi Chen (a1), Mingde Zhou (a1) and Jiezhi Wu (a1)...


The free-fall motion of a thin disk with small dimensionless moments of inertia ( ${I}^{\ast } \lt 1{0}^{- 3} $ ) was investigated experimentally. The transition from two-dimensional zigzag motion to three-dimensional spiral motion occurs due to the growth of three-dimensional disturbances. Oscillations in the direction normal to the zigzag plane increase with the development of this instability. At the same time, the oscillation of the nutation angle decreases to zero and the angle remains constant. The effects of initial conditions (release angle) were investigated. Two kinds of transition modes, zigzag–spiral transition and zigzag–spiral–zigzag intermittence transition, were observed to be separated by a critical Reynolds number. In addition, the solution of the generalized Kirchhoff equations shows that the small ${I}^{\ast } $ is responsible for the growth of disturbances in the third dimension (perpendicular to the planar motion).


Corresponding author

Email address for correspondence:


Hide All
Andersen, A., Pesavento, U. & Wang, Z. J. 2005 Unsteady dynamics of fluttering and tumbling plates. J. Fluid Mech. 541, 6590.
Belmonte, A., Eisenberg, H. & Moses, E. 1998 From flutter to tumble: inertial drag and Froude similarity in falling paper. Phys. Rev. Lett. 81, 345348.
Chrust, M., Bouchet, G. & Dušek, J. 2013 Numerical simulation of the dynamics of freely falling discs. Phys. Fluids 25, 044102.
Ern, P., Fernandes, P. C., Risso, F. & Magnaudet, J. 2007 Evolution of the wake structure and wake induced-loads along the path of free rising axisymetric bodies. Phys. Fluids 17, 113302.
Ern, P., Risso, F., Fernandes, P. C. & Magnaudet, J. 2009 Dynamical model for the bouyancy-driven zigzag motion of oblate bodies. Phys. Rev. Lett. 102, 134505.
Fernandes, P. C., Ern, P., Risso, F. & Magnaudet, J. 2005 On the zigzag dynamics of freely moving axisymetric bodies. Phys. Fluids 17, 098107.
Fernandes, P. C., Ern, P., Risso, F. & Magnaudet, J. 2008 Dynamics of axisymetric bodies rising along a zigzag path. J. Fluid Mech. 606, 209223.
Fernandes, P. C., Risso, F., Ern, P. & Magnaudet, J. 2007 Oscillatory motion and wake instability of freely rising axisymmetry bodis. J. Fluid Mech. 573, 479502.
Fields, S., Klaus, M., Moore, M. & Nori, F. 1997 Chaotic dynamics of falling disks. Nature 388, 252254.
Franck, A., Jacques, M. & David, F. 2013 Falling styles of disks. J. Fluid Mech. 719, 388405.
Horowitz, M. & Williamson, C. H. K. 2008 Critical mass and a new periodic four-ring vortex wake mode for freely rising and falling sphere. Phys. Fluids 20, 101701.
Horowitz, M. & Williamson, C. H. K. 2010 The effect of Reynolds number on the dynamics and wakes of freely rising and falling spheres. J. Fluid Mech. 651, 251294.
Howe, M. 1995 On the force and moment on a body in an imcompressible fluid, with application to rigid bodies and bubbles at high and low Reynolds numbers. Q. J. Mech. Appl. Maths 48, 401426.
Lee, C. B., Peng, H. W., Yuan, H. J., Wu, J. Z., Zhou, M. D. & Hussain, F. 2011 Experimental studies of surface waves inside a cylindrical container. J. Fluid Mech. 677, 3962.
Lee, C. B. & Wu, J. Z. 2008 Transition in wall bounded flow. Appl. Mech. Rev. 61, 030802.
Magnaudet, J. & Eames, I. 2000 The motion of high-Reynolds-number bubbles in inhomegeneous flow. Annu. Rev. Fluid Mech. 32, 659708.
Mahadevan, L., Ryu, W. S. & Samuel, A. D. T. 1999 Tumbling cards. Phys. Fluids 11, 13.
Mougin, G. & Magnaudet, J. 2002a The generalized Kirchhoff equations and their application to the interaction between a rigid body and an arbitrary time-dependent viscous flow. Intl J. Multiphase Flow 28, 18371851.
Mougin, G. & Magnaudet, J. 2002b Path instability of a rising bubble. Phys. Rev. Lett. 88, 014502.
Mougin, G. & Magnaudet, J. 2006 Wake-induced forces and torques on a zigzag/spiralling bubble. J. Fluid Mech. 567, 185194.
Pesavento, U. & Wang, Z. J. 2004 Falling paper: Navier–Stokes solutions, model of fluid forces, and centre of mass elevation. Phys. Rev. Lett. 93, 144501.
Saffman, P. G. 1956 On the rise of small air bubbles in water. J. Fluid Mech. 1, 249275.
Shew, W. L. & Pinton, J. F. 2006 Dynamical model of bubble path instability. Phys. Rev. Lett. 97, 144508.
Smith, E. H. 1971 Autorotating wings: an experimental investigation. J. Fluid Mech. 50, 513534.
Stewart, R. E. & List, R. 1983 Gyrational motion of disks during free-fall. Phys. Fluids 26, 920927.
Stringham, G. E., Simons, D. B. & Guy, H. P. 1969 The behaviour of large particles falling in quiescent liquids. US Geological Survey.
Vandenberghe, N., Zhang, J. & Childress, S. 2004 Symmetry breaking leads to forward flapping flight. J. Fluid Mech. 506, 147155.
Willmarth, W. W., Hawk, N. E. & Harvey, R. L. 1964 Steady and unsteady motions and wakes of freely-falling disks. Phys. Fluids 7, 197208.
Zhong, H. J., Chen, S. Y. & Lee, C. B. 2011 Experimental investigation of freely falling thin disks: transition from zigzag to spiral. Phys. Fluids 23, 912.
Zhong, H. J., Lee, C. B., Su, Z., Chen, S. Y., Zhou, M. D. & Wu, J. Z. 2012 Experimental investigation of freely falling thin disks. Part 1. The flow structures and Reynolds number effects on the zigzag motion. J. Fluid Mech. 716, 228250.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed