Skip to main content Accessibility help
×
Home

Evolution of similarity lengths in anisotropic magnetohydrodynamic turbulence

  • Riddhi Bandyopadhyay (a1) (a2), William H. Matthaeus (a1) (a2), Sean Oughton (a3) and Minping Wan (a4)

Abstract

In an earlier paper (Wan et al., J. Fluid Mech., vol. 697, 2012, pp. 296–315), the authors showed that a similarity solution for anisotropic incompressible three-dimensional magnetohydrodynamic (MHD) turbulence, in the presence of a uniform mean magnetic field $\boldsymbol{B}_{0}$ , exists if the ratio of parallel to perpendicular (with respect to $\boldsymbol{B}_{0}$ ) similarity length scales remains constant in time. This conjecture appears to be a rather stringent constraint on the dynamics of decay of the energy-containing eddies in MHD turbulence. However, we show here, using direct numerical simulations, that this hypothesis is indeed satisfied in incompressible MHD turbulence. After an initial transient period, the ratio of parallel to perpendicular length scales fluctuates around a steady value during the decay of the eddies. We show further that a Taylor–Kármán-like similarity decay holds for MHD turbulence in the presence of a mean magnetic field. The effect of different parameters, including Reynolds number, mean field strength, and cross-helicity, on the nature of similarity decay is discussed.

Copyright

Corresponding author

Email address for correspondence: whm@udel.edu

References

Hide All
Bandyopadhyay, R., Chasapis, A., Chhiber, R., Parashar, T. N., Matthaeus, W. H., Shay, M. A., Maruca, B. A., Burch, J. L., Moore, T. E., Pollock, C. J. et al. 2018 Incompressive energy transfer in the earth’s magnetosheath: magnetospheric multiscale observations. Astrophys. J. 866 (2), 106.
Bandyopadhyay, R., Oughton, S., Wan, M., Matthaeus, W. H., Chhiber, R. & Parashar, T. N. 2018b Finite dissipation in anisotropic magnetohydrodynamic turbulence. Phys. Rev. X 8, 041052.
Batchelor, G. K. 1953 The Theory of Homogeneous Turbulence. Cambridge University Press.
Bigot, B., Galtier, S. & Politano, H. 2008a Development of anisotropy in incompressible magnetohydrodynamic turbulence. Phys. Rev. E 78, 066301.
Bigot, B., Galtier, S. & Politano, H. 2008b Energy decay laws in strongly anisotropic magnetohydrodynamic turbulence. Phys. Rev. Lett. 100, 074502.
Biskamp, D. & Schwarz, E. 2001 On two-dimensional magnetohydrodynamic turbulence. Phys. Plasmas 8 (7), 32823292.
Breech, B., Matthaeus, W. H., Minnie, J., Bieber, J. W., Oughton, S., Smith, C. W. & Isenberg, P. A. 2008 Turbulence transport throughout the heliosphere. J. Geophys. Res. 113 (A8), A08105.
Dobrowolny, M., Mangeney, A. & Veltri, P. 1980 Fully developed anisotropic hydromagnetic turbulence in interplanetary space. Phys. Rev. Lett. 45, 144147.
Donzis, D. A., Yeung, P. K. & Sreenivasan, K. R. 2008 Dissipation and enstrophy in isotropic turbulence: resolution effects and scaling in direct numerical simulations. Phys. Fluids 20, 045108.
Dryden, H. L. 1943 A review of the statistical theory of turbulence. Q. Appl. Maths 1 (1), 742.
Ghosh, S., Matthaeus, W. H. & Montgomery, D. 1988 The evolution of cross-helicity in driven/dissipative two-dimensional magnetohydrodynamics. Phys. Fluids 31 (8), 21712184.
Goldreich, P. & Sridhar, S. 1995 Toward a theory of interstellar turbulence: II. Strong Alfvénic turbulence. Astrophys. J. 438, 763775.
Grappin, R. 1986 Onset and decay of two-dimensional magnetohydrodynamic turbulence with velocity–magnetic field correlation. Phys. Fluids 29, 24332443.
Hossain, M., Gray, P. C., Pontius, D. H. Jr., Matthaeus, W. H. & Oughton, S. 1995 Phenomenology for the decay of energy-containing eddies in homogeneous MHD turbulence. Phys. Fluids 7 (11), 28862904.
Hossain, M., Gray, P. C., Pontius, D. H. Jr., Matthaeus, W. H. & Oughton, S. 1996 Is the Alfvén-wave propagation effect important for energy decay in homogeneous MHD turbulence? AIP Conf. Proc. 382 (1), 358361.
de Kármán, T. & Howarth, L. 1938 On the statistical theory of isotropic turbulence. Proc. R. Soc. Lond. A 164, 192215.
von Kármán, T. & Lin, C. C. 1949 On the concept of similarity in the theory of isotropic turbulence. Rev. Mod. Phys. 21, 516519.
Kolmogorov, A. N. 1941 Dissipation of energy in the locally isotropic turbulence. C. R. Acad. Sci. URSS 32, 16 (Reprinted in Proc. R. Soc. Lond. A 434, 15–17 (1991)).
Linkmann, M., Berera, A. & Goldstraw, E. E. 2017 Reynolds-number dependence of the dimensionless dissipation rate in homogeneous magnetohydrodynamic turbulence. Phys. Rev. E 95, 013102.
Linkmann, M. F., Berera, A., McComb, W. D. & McKay, M. E. 2015 Nonuniversality and finite dissipation in decaying magnetohydrodynamic turbulence. Phys. Rev. Lett. 114, 235001.
Matthaeus, W. H., Goldstein, M. L. & Montgomery, D. C. 1983 Turbulent generation of outward-traveling interplanetary Alfvénic fluctuations. Phys. Rev. Lett. 51, 14841487.
Matthaeus, W. H., Goldstein, M. L. & Roberts, D. A. 1990 Evidence for the presence of quasi-two-dimensional nearly incompressible fluctuations in the solar wind. J. Geophys. Res. 95 (A12), 2067320683.
Matthaeus, W. H., Zank, G. P. & Oughton, S. 1996 Phenomenology of hydromagnetic turbulence in a uniformly expanding medium. J. Plasma Phys. 56 (3), 659675.
Monin, A. S. & Yaglom, A. M. 1975 Statistical Fluid Mechanics, vol. 2. MIT Press.
Montgomery, D. C. 1982 Major disruption, inverse cascades, and the Strauss equations. Phys. Scr. T2/1, 8388.
Montgomery, D. C. & Turner, L. 1981 Anisotropic magnetohydrodynamic turbulence in a strong external magnetic field. Phys. Fluids 24, 825831.
Onsager, L. 1949 Statistical hydrodynamics. Il Nuovo Cimento 6, 279287.
Oughton, S., Dmitruk, P. & Matthaeus, W. H. 2004 Reduced magnetohydrodynamics and parallel spectral transfer. Phys. Plasmas 11 (5), 22142225.
Oughton, S. & Matthaeus, W. H. 2005 Parallel and perpendicular cascades in solar wind turbulence. Nonlinear Process. Geophys. 12 (2), 299310.
Oughton, S., Matthaeus, W. H., Smith, C. W., Breech, B. & Isenberg, P. A. 2011 Transport of solar wind fluctuations: a two-component model. J. Geophys. Res. 116, A08105.
Oughton, S., Priest, E. R. & Matthaeus, W. H. 1994 The influence of a mean magnetic field on three-dimensional magnetohydrodynamic turbulence. J. Fluid Mech. 280, 95117.
Oughton, S., Wan, M., Servidio, S. & Matthaeus, W. H. 2013 On the origin of anisotropy in magnetohydrodynamic turbulence: the role of higher-order correlations. Astrophys. J. 768, 10.
Parashar, T. N., Matthaeus, W. H., Shay, M. A. & Wan, M. 2015 Transition from kinetic to MHD behavior in a collisionless plasma. Astrophys. J. 811 (2), 112.
Politano, H., Gomez, T. & Pouquet, A. 2003 von Kármán–Howarth relationship for helical magnetohydrodynamic flows. Phys. Rev. E 68, 026315.
Politano, H. & Pouquet, A. 1998a Dynamical length scales for turbulent magnetized flows. Geophys. Res. Lett. 25 (3), 273276.
Politano, H. & Pouquet, A. 1998b von Kármán–Howarth equation for magnetohydrodynamics and its consequences on third-order longitudinal structure and correlation functions. Phys. Rev. E 57, R21R24.
Robinson, D. C. & Rusbridge, M. G. 1971 Structure of turbulence in the zeta plasma. Phys. Fluids 14, 24992511.
Shebalin, J. V., Matthaeus, W. H. & Montgomery, D. 1983 Anisotropy in MHD turbulence due to a mean magnetic field. J. Plasma Phys. 29 (3), 525547.
Taylor, G. I. 1938 The spectrum of turbulence. Proc. R. Soc. Lond. A 164, 476490.
Teaca, B., Verma, M. K., Knaepen, B. & Carati, D. 2009 Energy transfer in anisotropic magnetohydrodynamic turbulence. Phys. Rev. E 79, 046312.
Usmanov, A. V., Goldstein, M. L. & Matthaeus, W. H. 2014 Three-fluid, three-dimensional magnetohydrodynamic solar wind model with eddy viscosity and turbulent resistivity. Astrophys. J. 788 (1), 43.
Verma, M. K. 2017 Anisotropy in quasi-static magnetohydrodynamic turbulence. Rep. Prog. Phys. 80 (8), 087001.
Wan, M., Oughton, S., Servidio, S. & Matthaeus, W. H. 2010 On the accuracy of simulations of turbulence. Phys. Plasmas 17 (8), 082308.
Wan, M., Oughton, S., Servidio, S. & Matthaeus, W. H. 2012 von Kármán self-preservation hypothesis for magnetohydrodynamic turbulence and its consequences for universality. J. Fluid Mech. 697, 296315.
Wu, P., Wan, M., Matthaeus, W. H., Shay, M. A. & Swisdak, M. 2013 von Kármán energy decay and heating of protons and electrons in a kinetic turbulent plasma. Phys. Rev. Lett. 111, 121105.
Zank, G. P., Matthaeus, W. H. & Smith, C. W. 1996 Evolution of turbulent magnetic fluctuation power with heliocentric distance. J. Geophys. Res. 101, 1709317107.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Evolution of similarity lengths in anisotropic magnetohydrodynamic turbulence

  • Riddhi Bandyopadhyay (a1) (a2), William H. Matthaeus (a1) (a2), Sean Oughton (a3) and Minping Wan (a4)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed