Skip to main content Accessibility help

Evaporating pure, binary and ternary droplets: thermal effects and axial symmetry breaking

  • Christian Diddens (a1) (a2), Huanshu Tan (a1), Pengyu Lv (a1), Michel Versluis (a1), J. G. M. Kuerten (a2) (a3), Xuehua Zhang (a1) (a4) and Detlef Lohse (a1) (a5)...


The Greek aperitif Ouzo is not only famous for its specific anise-flavoured taste, but also for its ability to turn from a transparent miscible liquid to a milky-white coloured emulsion when water is added. Recently, it has been shown that this so-called Ouzo effect, i.e. the spontaneous emulsification of oil microdroplets, can also be triggered by the preferential evaporation of ethanol in an evaporating sessile Ouzo drop, leading to an amazingly rich drying process with multiple phase transitions (Tan et al., Proc. Natl Acad. Sci. USA, vol. 113 (31), 2016, pp. 8642–8647). Due to the enhanced evaporation near the contact line, the nucleation of oil droplets starts at the rim which results in an oil ring encircling the drop. Furthermore, the oil droplets are advected through the Ouzo drop by a fast solutal Marangoni flow. In this article, we investigate the evaporation of mixture droplets in more detail, by successively increasing the mixture complexity from pure water over a binary water–ethanol mixture to the ternary Ouzo mixture (water, ethanol and anise oil). In particular, axisymmetric and full three-dimensional finite element method simulations have been performed on these droplets to discuss thermal effects and the complicated flow in the droplet driven by an interplay of preferential evaporation, evaporative cooling and solutal and thermal Marangoni flow. By using image analysis techniques and micro-particle-image-velocimetry measurements, we are able to compare the numerically predicted volume evolutions and velocity fields with experimental data. The Ouzo droplet is furthermore investigated by confocal microscopy. It is shown that the oil ring predominantly emerges due to coalescence.


Corresponding author

Email addresses for correspondence:,


Hide All
Bennacer, R. & Sefiane, K. 2014 Vortices, dissipation and flow transition in volatile binary drops. J. Fluid Mech. 749, 649665.
Cazabat, A.-M. & Guéna, G. 2010 Evaporation of macroscopic sessile droplets. Soft Matt. 6 (12), 25912612.
Cheng, A. K. H., Soolaman, D. M. & Yu, H.-Z. 2006 Evaporation of microdroplets of ethanol–water mixtures on gold surfaces modified with self-assembled monolayers. J. Phys. Chem. B 110 (23), 1126711271.
Christy, J. R. E., Hamamoto, Y. & Sefiane, K. 2011 Flow transition within an evaporating binary mixture sessile drop. Phys. Rev. Lett. 106 (20), 205701.
Chu, S. & Prosperetti, A. 2016 Dissolution and growth of a multicomponent drop in an immiscible liquid. J. Fluid Mech. 798, 787811.
Cira, N. J., Benusiglio, A. & Prakash, M. 2015 Vapour-mediated sensing and motility in two-component droplets. Nature 519 (7544), 446450.
Deegan, R., Bakajin, O., Dupont, T., Huber, G., Nagel, S. & Witten, T. 2000 Contact line deposits in an evaporating drop. Phys. Rev. E 62 (1), 756765.
Deegan, R. D., Bakajin, O., Dupont, T. F., Huber, G., Nagel, S. R. & Witten, T. A. 1997 Capillary flow as the cause of ring stains from dried liquid drops. Nature 389 (6653), 827829.
Diddens, C. 2017 Detailed finite element method modeling of evaporating multi-component droplets. J. Comput. Phys. 340, 670687.
Diddens, C., Kuerten, J. G. M., van der Geld, C. W. M. & Wijshoff, H. M. A. 2017 Modeling the evaporation of sessile multi-component droplets. J. Colloid Interface Sci. 487, 426436.
Dietrich, E., Rump, M., Lv, P., Kooij, E. S., Zandvliet, H. J. W. & Lohse, D. 2016a Segregation in dissolving binary-component sessile droplets. J. Fluid Mech. 812, 349369.
Dietrich, E., Wildeman, S., Visser, C. W., Hofhuis, K., Kooij, E. S., Zandvliet, H. J. W. & Lohse, D. 2016b Role of natural convection in the dissolution of sessile droplets. J. Fluid Mech. 794, 4567.
Dunn, G. J., Wilson, S. K., Duffy, B. R., David, S. & Sefiane, K. 2009 The strong influence of substrate conductivity on droplet evaporation. J. Fluid Mech. 623, 329.
Farrell, P. E., Piggott, M. D., Pain, C. C., Gorman, G. J. & Wilson, C. R. 2009 Conservative interpolation between unstructured meshes via supermesh construction. Comput. Meth. Appl. Mech. Engng 198 (33–36), 26322642.
Girard, F., Antoni, M., Faure, S. & Steinchen, A. 2006 Evaporation and Marangoni driven convection in small heated water droplets. Langmuir 22 (26), 1108511091.
Girard, F., Antoni, M. & Sefiane, K. 2008 On the effect of Marangoni flow on evaporation rates of heated water drops. Langmuir 24 (17), 92079210.
González, B., Calvar, N., Gómez, E. & Domínguez, Á. 2007 Density, dynamic viscosity, and derived properties of binary mixtures of methanol or ethanol with water, ethyl acetate, and methyl acetate at T = (293.15, 298.15, and 303.15) K. J. Chem. Thermodyn. 39 (12), 15781588.
Grolier, J.-P. E. & Wilhelm, E. 1981 Excess volumes and excess heat capacities of water + ethanol at 298.15 K. Fluid Phase Equilib. 6 (3–4), 283287.
Hu, H. & Larson, R. G. 2002 Evaporation of a sessile droplet on a substrate. J. Phys. Chem. B 106 (6), 13341344.
Hu, H. & Larson, R. G. 2005 Analysis of the effects of Marangoni stresses on the microflow in an evaporating sessile droplet. Langmuir 21 (9), 39723980.
Innocenzi, P., Malfatti, L., Costacurta, S., Kidchob, T., Piccinini, M. & Marcelli, A. 2008 Evaporation of ethanol and ethanol–water mixtures studied by time-resolved infrared spectroscopy. J. Phys. Chem. A 112 (29), 65126516.
Kim, H., Boulogne, F., Um, E., Jacobi, I., Button, E. & Stone, H. A. 2016 Controlled uniform coating from the interplay of Marangoni flows and surface-adsorbed macromolecules. Phys. Rev. Lett. 116 (12), 124501.
Langmuir, I. & Schaefer, V. J. 1943 Rates of evaporation of water through compressed monolayers on water. J. Franklin Inst. 235 (2), 119162.
Liu, C., Bonaccurso, E. & Butt, H.-J. 2008 Evaporation of sessile water/ethanol drops in a controlled environment. Phys. Chem. Chem. Phys. 10 (47), 7150.
Logg, A. 2012 Automated Solution of Differential Equations by the Finite Element Method the FEniCS Book. Springer.
Lohse, D. & Zhang, X. 2015 Surface nanobubbles and nanodroplets. Rev. Mod. Phys. 87 (3), 9811035.
Machrafi, H., Rednikov, A., Colinet, P. & Dauby, P. C. 2010 Bénard instabilities in a binary-liquid layer evaporating into an inert gas. J. Colloid Interface Sci. 349 (1), 331353.
Mathai, V., Calzavarini, E., Brons, J., Sun, C. & Lohse, D. 2016 Microbubbles and microparticles are not faithful tracers of turbulent acceleration. Phys. Rev. Lett. 117, 024501.
Oliveira, J. L. G., van der Geld, C. W. M. & Kuerten, J. G. M. 2015 Lagrangian velocity and acceleration statistics of fluid and inertial particles measured in pipe flow with 3d particle tracking velocimetry. Intl J. Multiphase Flow 73, 97107.
Pařez, S., Guevara-Carrion, G., Hasse, H. & Vrabec, J. 2013 Mutual diffusion in the ternary mixture of water + methanol + ethanol and its binary subsystems. Phys. Chem. Chem. Phys. 15 (11), 3985.
Popov, Y. 2005 Evaporative deposition patterns: spatial dimensions of the deposit. Phys. Rev. E 71 (3), 036313.
Rodrigues, V. M., Rosa, P. T. V., Marques, M. O. M., Petenate, A. J., Meireles, M. & Angela, A. 2003 Supercritical extraction of essential oil from aniseed (pimpinella anisum L) using CO2 : Solubility, kinetics, and composition data. J. Agr. Food Chem. 51 (6), 15181523.
Rowan, S. M., Newton, M. I., Driewer, F. W. & McHale, G. 2000 Evaporation of microdroplets of azeotropic liquids. J. Phys. Chem. B 104 (34), 82178220.
Sefiane, K. & Bennacer, R. 2011 An expression for droplet evaporation incorporating thermal effects. J. Fluid Mech. 667, 260271.
Sefiane, K., David, S. & Shanahan, M. E. R. 2008a Wetting and evaporation of binary mixture drops. J. Phys. Chem. B 112 (36), 1131711323.
Sefiane, K., Moffat, J. R., Matar, O. K. & Craster, R. V. 2008b Self-excited hydrothermal waves in evaporating sessile drops. Appl. Phys. Lett. 93 (7), 074103.
Sefiane, K., Tadrist, L. & Douglas, M. 2003 Experimental study of evaporating water–ethanol mixture sessile drop: influence of concentration. Intl J. Heat Mass Transfer 46 (23), 45274534.
Shi, L., Shen, P., Zhang, D., Lin, Q. & Jiang, Q. 2009 Wetting and evaporation behaviors of water–ethanol sessile drops on PTFE surfaces. Surf. Interface Anal. 41 (12–13), 951955.
Sitnikova, N. L., Sprik, R., Wegdam, G. & Eiser, E. 2005 Spontaneously formed trans-anethol/water/alcohol emulsions: mechanism of formation and stability. Langmuir 21 (16), 70837089.
Sobac, B. & Brutin, D. 2012 Thermocapillary instabilities in an evaporating drop deposited onto a heated substrate. Phys. Fluids 24 (3), 032103.
Tan, H., Diddens, C., Lv, P., Kuerten, J. G. M., Zhang, X. & Lohse, D. 2016 Evaporation-triggered microdroplet nucleation and the four life phases of an evaporating Ouzo drop. Proc. Natl. Acad. Sci. USA 113 (31), 86428647.
Tan, H., Diddens, C., Versluis, M., Butt, H.-J., Lohse, D. & Zhang, X. 2017 Self-wrapping of an ouzo drop induced by evaporation on a superamphiphobic surface. Soft Matt. 13, 27492759.
Thielicke, W.2014 The flapping flight of birds: analysis and application. PhD thesis, Rijksuniversiteit Groningen.
Thielicke, W. & Stamhuis, E. 2014 PIVlab – towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB. J. Open Res. Software 2 (1), e30.
Vazquez, G., Alvarez, E. & Navaza, J. M. 1995 Surface tension of alcohol water + water from 20 to 50 °C. J. Chem. Engng Data 40 (3), 611614.
Vitale, S. A. & Katz, J. L. 2003 Liquid droplet dispersions formed by homogeneous liquid–liquid nucleation: ‘the Ouzo effect’. Langmuir 19 (10), 41054110.
Wang, Z., Peng, X.-F., Mujumdar, A. S., Su, A. & Lee, D.-J. 2008 Evaporation of ethanol–water mixture drop on horizontal substrate. Dry. Technol. 26 (6), 806810.
Yano, R., Fukuda, Y. & Hashi, T. 1988 Thermal conductivity measurement of water–ethanol solutions by the laser-induced transient grating method. Chem. Phys. 124 (2), 315319.
Zhang, X., Lu, Z., Tan, H., Bao, L., He, Y., Sun, C. & Lohse, D. 2015 Formation of surface nanodroplets under controlled flow conditions. Proc. Natl. Acad. Sci. USA 112 (30), 92539257.
Zhang, X. H. & Ducker, W. 2007 Formation of interfacial nanodroplets through changes in solvent quality. Langmuir 23 (25), 1247812480.
Zhong, X. & Duan, F. 2016 Flow regime and deposition pattern of evaporating binary mixture droplet suspended with particles. Eur. Phys. J. E 39 (2), 18.
Zuend, A., Marcolli, C., Booth, A. M., Lienhard, D. M., Soonsin, V., Krieger, U. K., Topping, D. O., McFiggans, G., Peter, T. & Seinfeld, J. H. 2011 New and extended parameterization of the thermodynamic model AIOMFAC: calculation of activity coefficients for organic-inorganic mixtures containing carboxyl, hydroxyl, carbonyl, ether, ester, alkenyl, alkyl, and aromatic functional groups. Atmos. Chem. Phys. 11 (17), 91559206.
Zuend, A., Marcolli, C., Luo, B. P. & Peter, T. 2008 A thermodynamic model of mixed organic-inorganic aerosols to predict activity coefficients. Atmos. Chem. Phys. 8 (16), 45594593.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Type Description Title

Diddens et al. supplementary movie
Simulation of the pure water droplet (figure 3)

 Video (25.5 MB)
25.5 MB

Diddens et al. supplementary movie
Simulation of the binary water-ethanol droplet (figure 4)

 Video (48.4 MB)
48.4 MB

Diddens et al. supplementary movie
Simulation of the ternary Ouzo droplet (figure 6)

 Video (70.3 MB)
70.3 MB

Diddens et al. supplementary movie
Velocity in the water-ethanol droplet obtained by the micro-PIV technique (figure 9(a-f))

 Video (70.7 MB)
70.7 MB

Diddens et al. supplementary movie
Ethanol concentration at the interface and velocity near the substrate in the water-ethanol droplet obtained by numerical simulation (figure 8, figure 9(g-l))

 Video (88.8 MB)
88.8 MB

Diddens et al. supplementary movie
Flow in the ternary Ouzo droplet by visualizing the oil microdroplets via confocal microscopy (figure 11)

 Video (67.5 MB)
67.5 MB

Diddens et al. supplementary movie
Behavior of the oil microdroplets at the rim and on the substrate by confocal microscopy (figure 12)

 Video (71.0 MB)
71.0 MB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed