Skip to main content Accessibility help

Enskog kinetic theory for monodisperse gas–solid flows

  • V. Garzó (a1), S. Tenneti (a2), S. Subramaniam (a2) and C. M. Hrenya (a3)


The Enskog kinetic theory is used as a starting point to model a suspension of solid particles in a viscous gas. Unlike previous efforts for similar suspensions, the gas-phase contribution to the instantaneous particle acceleration appearing in the Enskog equation is modelled using a Langevin equation, which can be applied to a wide parameter space (e.g. high Reynolds number). Attention here is limited to low Reynolds number flow, however, in order to assess the influence of the gas phase on the constitutive relations, which was assumed to be negligible in a previous analytical treatment. The Chapman–Enskog method is used to derive the constitutive relations needed for the conservation of mass, momentum and granular energy. The results indicate that the Langevin model for instantaneous gas–solid force matches the form of the previous analytical treatment, indicating the promise of this method for regions of the parameter space outside of those attainable by analytical methods (e.g. higher Reynolds number). The results also indicate that the effect of the gas phase on the constitutive relations for the solid-phase shear viscosity and Dufour coefficient is non-negligible, particularly in relatively dilute systems. Moreover, unlike their granular (no gas phase) counterparts, the shear viscosity in gas–solid systems is found to be zero in the dilute limit and the Dufour coefficient is found to be non-zero in the elastic limit.


Corresponding author

Email address for correspondence:


Hide All
Abbas, M., Climent, E. & Simonin, O. 2009 Shear-induced self-diffusion of inertial particles in a viscous fluid. Phys. Rev. E 79 (3), 036313.
Agrawal, K., Loezos, P. N., Syamlal, M. & Sundaresan, S. 2001 The role of meso-scale structures in rapid gas–solid flows. J. Fluid Mech. 445, 151185.
Anderson, T. B. & Jackson, R. 1967 A fluid mechanical description of fluidized beds. Ind. Engng Chem. Fundam. 6, 527539.
Balzer, G., Boelle, A. & Simonin, O. 1995 Eulerian gas–solid flow modelling of dense fluidized beds. In Computational Gas–Solid Flows and Reacting Systems: Theory, Methods and Practice. Fluidization VIII (ed. Large, J. F. & Lagurie, C.). Engineering Foundation.
Brey, J. J., Dufty, J. W. & Santos, A. 1997 Dissipative dynamics for hard spheres. J. Stat. Phys. 87, 10511066.
Brey, J. J., Dufty, J. W., Santos, A. & Kim, C. S. 1998 Hydrodynamics for granular flows at low density. Phys. Rev. E 58, 46384653.
Brilliantov, N. & Pöschel, T. 2004 Kinetic Theory of Granular Gases. Oxford University Press.
Campbell, C. S. 1990 Rapid granular flows. Annu. Rev. Fluid Mech. 22, 5792.
Carnahan, N. F. & Starling, K. E. 1969 Equation of state for nonattracting rigid spheres. J. Chem. Phys. 51, 635636.
Chapman, S. & Cowling, T. G. 1970 The Mathematical Theory of Nonuniform Gases. Cambridge University Press.
Clement, C. P., Pacheco-Martínez, H. A., Swift, M. R. & King, P. J. 2010 The water-enhanced Brazil nut effect. Europhys. Lett. 91, 54001.
Février, P., Simonin, O. & Squires, K. D. 2005 Partitioning of particle velocities in gas–solid turbulent flows into a continuous field and a spatially uncorrelated random distribution: theoretical formalism and numerical study. J. Fluid. Mech. 533, 146.
Gardiner, C. W. 1985 Handbook of Stochastic Methods, second edition. Springer.
Garzó, V. 2005 Instabilities in a free granular fluid described by the Enskog equation. Phys. Rev. E 72, 021106.
Garzó, V. & Dufty, J. W. 1999 Dense fluid transport for inelastic hard spheres. Phys. Rev. E 59, 58955911.
Garzó, V., Dufty, J. W. & Hrenya, C. M. 2007a Enskog theory for polydisperse granular mixtures. Part 1. Navier–Stokes order transport. Phys. Rev. E 76, 031303.
Garzó, V., Hrenya, C. M. & Dufty, J. W. 2007b Enskog theory for polydisperse granular mixtures. Part 2. Sonine polynomial approximation. Phys. Rev. E 76, 031304.
Garzó, V. & Santos, A. 2003 Kinetic Theory of Gases in Shear Flows: Nonlinear Transport. Kluwer Academic.
Garzó, V., Santos, A. & Montanero, J. M. 2007c Modified Sonine approximation for the Navier–Stokes transport coefficients of a granular gas. Physica A 376, 94107.
Garzó, V., Vega Reyes, F. & Montanero, J. M. 2009 Modified Sonine approximation for granular binary mixtures. J. Fluid Mech. 623, 387411.
Gidaspow, D. 1994 Multiphase Flow and Fluidization. Academic.
Gidaspow, D. & Jiradilok, V. 2009 Computational Techniques: The Multiphase CFD Approach to Fluidization and Green Energy Technologies. Nova.
Goldhirsch, I. 2003 Rapid granular flows. Annu. Rev. Fluid Mech. 35, 267293.
Hrenya, C. M., Galvin, J. E. & Wildman, R. D. 2008 Evidence of higher-order effects in thermally driven granular flows. J. Fluid Mech. 598, 429450.
Idler, V., Sánchez, I., Paredes, R., Gutiérrez, G., Reyes, L. I. & Botet, R. 2009 Three-dimensional simulations of a vertically vibrated granular bed including interstitial air. Phys. Rev. E 79, 051301.
Jackson, R. 2000 The Dynamics of Fluidized Particles. Cambridge University Press.
Koch, D. L. 1990 Kinetic theory for a monodisperse gas–solid suspension. Phys. Fluids A 2, 17111723.
Koch, D. L. & Hill, R. J. 2001 Inertial effects in suspensions and porous-media flows. Annu. Rev. Fluid Mech. 33, 619647.
Koch, D. L. & Sangani, A. S. 1999 Particle pressure and marginal stability limits for a homogeneous monodisperse gas-fluidized bed: kinetic theory and numerical simulations. J. Fluid Mech. 400, 229263.
Lumley, J. L. & Newman, G. R. 1977 The return to isotropy of homogeneous turbulence. J. Fluid Mech. 82, 161178.
Lun, C. K. K. & Savage, S. B. 2003 Kinetic theory for inertia flows of dilute turbulent gas–solids mixtures. In Granular Gas Dynamics (ed. Pöschel, T. & Brilliantov, N.), p. 263. Springer.
Lutsko, J. 2005 Transport properties of dense dissipative hard-sphere fluids for arbitrary energy loss models. Phys. Rev. E 72, 021306.
Ma, D. & Ahmadi, G. 1988 A kinetic model for rapid granular flow of nearly elastic particles including interstitial fluid effects. Powder Technol. 56, 191207.
Möbius, M. E., Cheng, X., Eshuis, P., Karczmar, G. S., Nagel, S. R. & Jaeger, H. M. 2005 Effect of air on granular size separation in a vibrated granular bed. Phys. Rev. E 72, 011304.
Möbius, M. E., Lauderdale, B. E., Nagel, S. R. & Jaeger, H. M. 2001 Size separation of granular particles. Nature (London) 414, 270.
Montanero, J. M. & Santos, A. 2000 Computer simulation of uniformly heated granular fluids. Granul. Matt. 2, 5364.
Montanero, J. M., Santos, A. & Garzó, V. 2007 First-order Chapman–Enskog velocity distribution function in a granular gas. Physica A 376, 7593.
Naylor, M. A., Swift, M. R. & King, P. J. 2003 Air-driven Brazil nut effect. Phys. Rev. E 68, 012301.
van Noije, T. P. C. & Ernst, M. H. 1998 Velocity distributions in homogeneous granular fluids: the free and heated case. Granul. Matt. 1, 5764.
Pannala, S., Syamlal, M. & O’Brien, T. J. 2011 Computational Gas–Solids Flows and Reacting Systems: Theory, Methods and Practice. doi:10.4018/978-1-61520-651-3.
Pöschel, T. & Brilliantov, N. 2006 Breakdown of the Sonine expansion for the velocity distribution of granular gases. Europhys. Lett. 74, 424430.
Rericha, E. C., Bizon, C., Shattuck, M. D. & Swinney, H. L. 2002 Shocks in supersonic sand. Phys. Rev. Lett. 88, 014302.
Richardson, J. F. & Zaki, W. N. 1954 Sedimentation and fluidisation. Part 1. Trans. Inst. Chem. Engrs Lond. 32, 35.
Sánchez, P., Swift, M. R. & King, P. J. 2004 Stripe formation in granular mixtures due to the differential influence of drag. Phys. Rev. Lett. 93, 184302.
Sangani, A. S., Mo, G., Tsao, H.-K. & Koch, D. L. 1996 Simple shear flows of dense gas–solid suspensions at finite Stokes numbers. J. Fluid Mech. 313, 309341.
Santos, V., Garzó, V. & Dufty, J. W. 2004 Inherent rheology of a granular fluid in uniform shear flow. Phys. Rev. E 69, 061303.
Santos, A. & Montanero, J. M. 2009 The second and third Sonine coefficients of a freely cooling granular gas revisited. Granul. Matt. 11, 157168.
Simonin, O., Zaichik, L. I., Alipchenkov, V. M. & Février, P. 2006 Connection between two statistical approaches for the modelling of particle velocity and concentration distributions in turbulent flow: the mesoscopic Eulerian formalism and the two-point probability density function method. Phys. Fluids 18 (12), 125107.
Sinclair, J. L. & Jackson, R. 1989 Gas-particle flow in a vertical pipe with particle–particle interactions. AIChE J. 35, 14731486.
Sundaram, S. & Collins, L. R. 1999 A numerical study of the modulation of isotropic turbulence by suspended particles. J. Fluid Mech. 379, 105143.
Tenneti, S., Fox, R. O. & Subramaniam, S. 2010 a Instantaneous particle acceleration model for gas–solid suspensions at moderate Reynolds numbers. In 7th International Conference on Multiphase Flow, Tampa, Florida.
Tenneti, S., Garg, R., Hrenya, C. M., Fox, R. O. & Subramaniam, S. 2010b Direct numerical simulation of gas–solid suspensions at moderate Reynolds number: quantifying the coupling between hydrodynamic forces and particle velocity fluctuations. Powder Technol. 203, 5769.
Tsao, H.-K. & Koch, D. L. 1995 Simple shear flows of dilute gas–solid suspensions. J. Fluid Mech. 296, 211245.
Wen, C. Y. & Yu, Y. H. 1966 Mechanics of fluidization. Chem. Engng Prog. Symp. Ser. 62, 100111.
Wildman, R., Martin, T. W., Huntley, J. M., Jenkins, J. T., Viswanathan, H., Fen, X. & Parker, D. J. 2008 Experimental investigation and kinetic-theory-based model of a rapid granular shear flow. J. Fluid Mech. 602, 6379.
Wylie, J. J., Zhang, Q., Xu, H. Y. & Sun, X. X. 2008 Drag-induced particle segregation with vibrating boundaries. Europhys. Lett. 81, 54001.
Xu, Y. & Subramaniam, S. 2006 A multiscale model for dilute turbulent gas-particle flows based on the equilibration of energy concept. Phys. Fluids 18, 033301.
Yan, X., Shi, Q., Hou, M., Lu, K. & Chan, C. K. 2003 Effects of air on the segregation of particles in a shaken granular bed. Phys. Rev. Lett. 91, 014302.
Zaichik, L. I., Simonin, O. & Alipchenkov, V. M. 2009 An Eulerian approach for large eddy simulation of particle transport in turbulent flows. J. Turbul. 10 (4), 121.
Zeilstra, M. A., van der Hoef, M. A. & Kuipers, J. A. M. 2008 Simulations of density segregation in vibrated beds. Phys. Rev. E 77, 031309.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Related content

Powered by UNSILO

Enskog kinetic theory for monodisperse gas–solid flows

  • V. Garzó (a1), S. Tenneti (a2), S. Subramaniam (a2) and C. M. Hrenya (a3)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.