Skip to main content Accessibility help

Enhanced secondary motion of the turbulent flow through a porous square duct

  • A. Samanta (a1), R. Vinuesa (a1), I. Lashgari (a1), P. Schlatter (a1) and L. Brandt (a1)...


Direct numerical simulations of the fully developed turbulent flow through a porous square duct are performed to study the effect of the permeable wall on the secondary cross-stream flow. The volume-averaged Navier–Stokes equations are used to describe the flow in the porous phase, a packed bed with porosity ${\it\varepsilon}_{c}=0.95$ . The porous square duct is computed at $\mathit{Re}_{b}\simeq 5000$ and compared with the numerical simulations of a turbulent duct with four solid walls. The two boundary layers on the top wall and porous interface merge close to the centre of the duct, as opposed to the channel, because the sidewall boundary layers inhibit the growth of the shear layer over the porous interface. The most relevant feature in the porous duct is the enhanced magnitude of the secondary flow, which exceeds that of a regular duct by a factor of four. This is related to the increased vertical velocity, and the different interaction between the ejections from the sidewalls and the porous medium. We also report a significant decrease in the streamwise turbulence intensity over the porous wall of the duct (which is also observed in a porous channel), and the appearance of short spanwise rollers in the buffer layer, replacing the streaky structures of wall-bounded turbulence. These spanwise rollers most probably result from a Kelvin–Helmholtz type of instability, and their width is limited by the presence of the sidewalls.


Corresponding author

Email address for correspondence:


Hide All
Breugem, W. P., Boersma, B.-J. & Uittenbogaard, R. E. 2006 The influence of wall permeability on turbulent channel flow. J. Fluid Mech. 562, 3572.
Finnigan, J. 2000 Turbulence in plant canopies. Annu. Rev. Fluid Mech. 32, 519571.
Fischer, P. F., Lottes, J. W. & Kerkemeier, S. G.2008 Nek5000: open source spectral element CFD solver. Available from:
Gessner, F. B. 1973 The origin of secondary flow in turbulent flow along a corner. J. Fluid Mech. 58, 125.
Huser, A. & Biringen, S. 1993 Direct numerical simulation of turbulent flow in a square duct. J. Fluid Mech. 257, 6595.
Jiménez, J., Uhlmann, M., Pinelli, A. & Kawahara, G. 2001 Turbulent shear flow over active and passive porous surfaces. J. Fluid Mech. 442, 89117.
Noorani, A., El Khoury, G. K. & Schlatter, P. 2013 Evolution of turbulence characteristics from straight to curved pipes. Intl J. Heat Fluid Flow 41, 1626.
Pinelli, A., Uhlmann, M., Sekimoto, A. & Kawahara, G. 2010 Reynolds number dependence of mean flow structure in square duct turbulence. J. Fluid Mech. 644, 107122.
Prandtl, L. 1926 Über die ausgebildete Turbulenz. In Verh. 2nd Int. Kong. Tech. Mech. Zürich, pp. 6275 (translation in NACA Tech. Memo. no. 435).
Schlatter, P. & Örlü, R. 2012 Turbulent boundary layers at moderate Reynolds numbers: inflow length and tripping effects. J. Fluid Mech. 710, 534.
Vinuesa, R., Noorani, A., Lozano-Durán, A., El Khoury, G. K., Schlatter, P., Fischer, P. F. & Nagib, H. M. 2014 Aspect ratio effects in turbulent duct flows studied through direct numerical simulation. J. Turbul. 15, 677706.
Vinuesa, R., Schlatter, P., Malm, J., Mavriplis, C. & Henningson, D. S. 2015a Direct numerical simulation of the flow around a wall-mounted square cylinder under various inflow conditions. J. Turbul. 16, 555587.
Vinuesa, R., Schlatter, P. & Nagib, H. M. 2015b On minimum aspect ratio for duct flow facilities and the role of side walls in generating secondary flows. J. Turbul. 16, 588606.
Whitaker, S. 1996 The Forchheimer equation: a theoretical development. Trans. Porous Med. 25, 2761.
Zagni, A. F. M. & Smith, K. V. H. 1976 Stability of liquid flow down an inclined plane. J. Hydraul. Div. 102, 207222.
Zippe, H. J. & Graf, W. H. 1983 Turbulent boundary-layer flow over permeable and non-permeable rough surfaces. J. Hydraul. Res. 21, 5165.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Enhanced secondary motion of the turbulent flow through a porous square duct

  • A. Samanta (a1), R. Vinuesa (a1), I. Lashgari (a1), P. Schlatter (a1) and L. Brandt (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed