Skip to main content Accessibility help
×
Home

Energy-consistent entrainment relations for jets and plumes

  • Maarten van Reeuwijk (a1) and John Craske (a1)

Abstract

We discuss energetic restrictions on the entrainment coefficient ${\it\alpha}$ for axisymmetric jets and plumes. The resulting entrainment relation includes contributions from the mean flow, turbulence and pressure, fundamentally linking ${\it\alpha}$ to the production of turbulence kinetic energy, the plume Richardson number $\mathit{Ri}$ and the profile coefficients associated with the shape of the buoyancy and velocity profiles. This entrainment relation generalises the work by Kaminski et al. (J. Fluid Mech., vol. 526, 2005, pp. 361–376) and Fox (J. Geophys. Res., vol. 75, 1970, pp. 6818–6835). The energetic viewpoint provides a unified framework with which to analyse the classical entrainment models implied by the plume theories of Morton et al. (Proc. R. Soc. Lond. A, vol. 234, 1955, pp. 1–23) and Priestley & Ball (Q. J. R. Meteorol. Soc., vol. 81, 1954, pp. 144–157). Data for pure jets and plumes in unstratified environments indicate that to first order the physics is captured by the Priestley and Ball entrainment model, implying that (1) the profile coefficient associated with the production of turbulence kinetic energy has approximately the same value for pure plumes and jets, (2) the value of ${\it\alpha}$ for a pure plume is roughly a factor of $5/3$ larger than for a jet and (3) the enhanced entrainment coefficient in plumes is primarily associated with the behaviour of the mean flow and not with buoyancy-enhanced turbulence. Theoretical suggestions are made on how entrainment can be systematically studied by creating constant- $\mathit{Ri}$ flows in a numerical simulation or laboratory experiment.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Energy-consistent entrainment relations for jets and plumes
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Energy-consistent entrainment relations for jets and plumes
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Energy-consistent entrainment relations for jets and plumes
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Email address for correspondence: m.vanreeuwijk@imperial.ac.uk

References

Hide All
Agrawal, A. & Prasad, A. K. 2004 Evolution of a turbulent jet subjected to volumetric heating. J. Fluid Mech. 511, 95123.
Batchelor, G. K. 1954 Heat convection and buoyancy effects in fluids. Q. J. R. Meteorol. Soc. 80 (345), 339358.
Bhat, G. S. & Narasimha, R. 1996 A volumetrically heated jet: large-eddy structure and entrainment characteristics. J. Fluid Mech. 325, 303330.
van den Bremer, T. S. & Hunt, G. R. 2010 Universal solutions for Boussinesq and non-Boussinesq plumes. J. Fluid Mech. 644, 165192.
Carazzo, G., Kaminski, E. & Tait, S. 2006 The route to self-similarity in turbulent jets and plumes. J. Fluid Mech. 547, 137148.
Caulfield, C. P. & Woods, A. W. 1998 Turbulent gravitational convection from a point source in a non-uniformly stratified environment. J. Fluid Mech. 360, 229248.
Craske, J.2015 Unsteady turbulent jets and plumes. PhD thesis, Imperial College London.
Craske, J. & van Reeuwijk, M. 2015a Energy dispersion in turbulent jets. Part 1. Direct simulation of steady and unsteady jets. J. Fluid Mech. 763, 500537.
Craske, J. & van Reeuwijk, M. 2015b Energy dispersion in turbulent jets. Part 2. A robust model for unsteady jets. J. Fluid Mech. 763, 538566.
Delichatsios, M. A. 1979 Time similarity analysis of unsteady buoyant plumes in neutral surroundings. J. Fluid Mech. 93, 241250.
Ezzamel, A., Salizzoni, P. & Hunt, G. R. 2015 Dynamical variability of axisymmetric buoyant plumes. J. Fluid Mech. 765, 576611.
Fannelop, T. K. & Webber, D. M. 2003 On buoyant plumes rising from area sources in a calm environment. J. Fluid Mech. 497, 319334.
Fischer, H. B., List, E. J., Koh, R. C., Imberger, J. & Brooks, N. H. 1979 Mixing in Inland and Coastal Waters. Academic.
Fox, D. G. 1970 Forced plume in a stratified fluid. J. Geophys. Res. 75 (33), 68186835.
George, W. K. 1989 The self-preservation of turbulent flows and its relation to initial conditions and coherent structures. In Advances in Turbulence (ed. Arndt, R. E. A. & George, W. K.), pp. 3973. Hemisphere Publishing Corp., New York.
Hermanson, J. C. & Dimotakis, P. E. 1989 Effects of heat release in a turbulent, reacting shear layer. J. Fluid Mech. 199, 333375.
Hunt, G. R. & Kaye, N. B. 2005 Lazy plumes. J. Fluid Mech. 533, 329338.
Hunt, G. R. & van den Bremer, T. S. 2011 Classical plume theory: 1937–2010 and beyond. IMA J. Appl. Maths 76, 424448.
Kaminski, E., Tait, S. & Carazzo, G. 2005 Turbulent entrainment in jets with arbitrary buoyancy. J. Fluid Mech. 526, 361376.
Linden, P. F. 1999 The fluid mechanics of natural ventilation. Annu. Rev. Fluid Mech. 31, 201238.
List, E. J. 1982 Turbulent jets and plumes. Annu. Rev. Fluid Mech. 14, 189212.
List, E. J. & Imberger, J. 1973 Turbulent entrainment in buoyant jets and plumes. J. Hydraul. Div. ASCE 99, 14611474.
Matulka, A., Lopez, P., Redondo, J. M. & Tarquis, A. 2014 On the entrainment coefficient in a forced plume: quantitative effects of source parameters. Nonlinear Process. Geophys. 21, 269278.
Morton, B. R. 1959 Forced plumes. J. Fluid Mech. 5, 151163.
Morton, B. R. 1971 The choice of conservation equations for plume models. J. Geophys. Res. 30, 74097416.
Morton, B. R., Taylor, G. I. & Turner, J. S. 1956 Turbulent gravitational convection from maintained and instantaneous sources. Proc. R. Soc. Lond. A 234, 123.
Panchapakesan, N. R. & Lumley, J. L. 1993a Turbulence measurements in axisymmetric jets of air and helium. Part 1. Air jet. J. Fluid Mech. 246, 197223.
Panchapakesan, N. R. & Lumley, J. L. 1993b Turbulence measurements in axisymmetric jets of air and helium. Part 2. Helium jet. J. Fluid Mech. 246, 225247.
Papanicolaou, P. N. & List, E. J. 1988 Investigations of round vertical turbulent buoyant jets. J. Fluid Mech. 195, 341391.
Priestley, C. H. B. & Ball, F. K. 1955 Continuous convection from an isolated source of heat. Q. J. R. Meteorol. Soc. 81, 144157.
Redford, J. A., Castro, I. P. & Coleman, G. N. 2012 On the universality of turbulent axisymmetric wakes. J. Fluid Mech. 710, 419452.
Ricou, F. P. & Spalding, D. B. 1961 Measurements of entrainment by axisymmetrical turbulent jets. J. Fluid Mech. 11 (01), 2132.
Scase, M. M., Caulfield, C. P., Dalziel, S. B. & Hunt, J. C. R. 2006 Time-dependent plumes and jets with decreasing source strengths. J.  Fluid Mech. 563, 443461.
Scase, M. M. & Hewitt, R. E. 2012 Unsteady turbulent plume models. J. Fluid Mech. 697, 455480.
Shabbir, A. & George, W. K. 1994 Experiments on a round turbulent buoyant plume. J. Fluid Mech. 275, 132.
Squires, P. & Turner, J. S. 1962 An entraining jet model for cumulo-nimbus updraughts. Tellus 14 (4), 422434.
Telford, J. W. 1966 The convective mechanism in clear air. J. Atmos. Sci. 23 (6), 652666.
Tennekes, H. & Lumley, J. L. 1972 A First Course in Turbulence. MIT Press.
Turner, J. S. 1979 Buoyancy Effects in Fluids. Cambridge University Press.
Turner, J. S. 1986 Turbulent entrainment: the development of the entrainment assumption, and its application to geophysical flows. J.  Fluid Mech. 173, 431471.
Vul’fson, A. N. & Borodin, O. O. 2001 Self-similar propagation regimes of a nonstationary high-temperature convective jet in the adiabatic atmosphere. J. Appl. Mech. Tech. Phys. 42, 255261.
Wang, H. & Law, A. W.-K. 2002 Second-order integral model for a round turbulent buoyant jet. J. Fluid Mech. 459, 397428.
Yu, H. Z. 1990 Transient plume influence in measurement of convective heat release rates of fast-growing fires using a large-scale fire products collector. Trans. ASME J. Heat Transfer 112 (1), 186191.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Energy-consistent entrainment relations for jets and plumes

  • Maarten van Reeuwijk (a1) and John Craske (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed